Simulation of blood flow in three-dimensional geometrically complex arterial networks involves many inlets and outlets and requires large-scale parallel computing. It should be based on physiologically correct boundary conditions, which are accurate, robust, and simple to implement in the parallel framework. While a secondary closure problem can be solved to provide approximate outflow conditions, it is preferable, when possible, to impose the clinically measured flow rates. We have developed a new method to incorporate such measurements at multiple outlets, based on a time-dependent resistance boundary condition for the pressure in conjunction with a Neumann boundary condition for the velocity. Convergence of the numerical solution for the specified outlet flow rates is achieved very fast at a computational complexity comparable to the widely used Resistance or Windkessel boundary conditions. The method is verified using a patient-specific cranial vascular network involving 20 arteries and 10 outlets.
We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.