Vat photopolymerization 3D printing provides new opportunities for the fabrication of tissue scaffolds and medical devices. However, for the manufacturing of biodegradable elastomers, it usually requires the use of organic solvents to dissolve the solid photoinitators and achieve low resin viscosity, making this process environmentally unfriendly and not optimal for biomedical applications. Here, we report solvent-free 3D printing of biodegradable elastomers by digital light processing with well-defined photoinitiator–polymer conjugates. Being in liquid state at room temperature, the macrophotoinitiators enabled high-quality 3D printing in the absence of any organic solvents that are usually used in digital light 3D printing. This allowed the systematic investigation of structure–property relationships of 3D-printed biodegradable elastomers without the interference from reactive diluents. The developed macrophotoinitiators were compatible with various photopolymers and could be applied for solvent-free fabrication of biodegradable shape-memory devices. This work offers new perspectives for the solvent-free additive manufacturing of bioresorbable medical implants and other functional devices.
Reliable ammonia quantification assays are essential for monitoring ammonemia in patients with liver diseases. In this study, we describe the development process of a microplate-based assay for accurate, precise, and robust ammonia quantification in biological fluids, following regulatory guidelines on bioanalytical method validation. The assay is based on transmembrane pH-gradient polymersomes that encapsulate a pH-sensitive ratiometric fluorophore, the fluorescence signal of which correlates with the ammonia concentration in the sample. Using a four-parameter logistic regression, the assay had a large quantification range (30–800 μM ammonia). As for selectivity, the presence of amino acids or pyruvate (up to clinically relevant concentrations) showed no assay interference. In samples with low bilirubin levels, polymersomes containing the fluorophore pyranine provided accurate ammonia quantification. In samples with high bilirubin concentrations, billirubin’s optical interference was alleviated when replacing pyranine with a close to near-infrared hemicyanine fluorophore. Finally, the assay could correctly retrieve the ammonia concentration in ammonia-spiked human plasma samples, which was confirmed by comparing our measurements with the data obtained using a commercially available point-of-care device for ammonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.