A comprehensive strategy is required to mitigate risks to astronauts’ health, well-being, and performance. This strategy includes developing countermeasures to prevent or reduce adverse responses to the stressors astronauts encounter during spaceflight, such as weightlessness. Because artificial gravity (AG) by centrifugation simultaneously affects all physiological systems, AG could mitigate the effects of weightlessness in multiple systems. In 2019, NASA and the German Aerospace Center conducted a 60-days Artificial Gravity Bed Rest Study with the European Space Agency (AGBRESA). The objectives of this study were to 1) determine if 30 min of AG daily is protective during head down bed rest, and 2) compare the protective effects of a single daily bout (30 min) of AG versus multiple daily bouts (6 × 5 min) of AG (1 Gz at the center of mass) on physiological functions that are affected by weightlessness and by head-down tilt bed rest. The AGBRESA study involved a comprehensive suite of standard and innovative technologies to characterize changes in a broad spectrum of physiological systems. The current article is intended to provide a detailed overview of the methods used during AGBRESA.
Spaceflight is associated with reduced antigravitational muscle activity, which results in trunk muscle atrophy and may contribute to post-flight postural and spinal instability. Exercise in artificial gravity (AG) performed via short-arm human centrifugation (SAHC) is a promising multi-organ countermeasure, especially to mitigate microgravity-induced postural muscle atrophy. Here, we compared trunk muscular activity (mm. rectus abdominis, ext. obliques and multifidi), cardiovascular response and tolerability of trunk muscle exercises performed during centrifugation with 1 g at individual center of mass on a SAHC against standard upright exercising. We recorded heart rate, blood pressure, surface trunk muscle activity, motion sickness and rating of perceived exertion (BORG) of 12 participants (8 male/4 female, 34 ± 7 years, 178.4 ± 8.2 cm, 72.1 ± 9.6 kg). Heart rate was significantly increased (p < 0.001) during exercises without differences in conditions. Systolic blood pressure was higher (p < 0.001) during centrifugation with a delayed rise during exercises in upright condition. Diastolic blood pressure was lower in upright (p = 0.018) compared to counter-clockwise but not to clockwise centrifugation. Target muscle activation were comparable between conditions, although activity of multifidi was lower (clockwise: p = 0.003, counter-clockwise: p < 0.001) and rectus abdominis were higher (clockwise: p = 0.0023, counter-clockwise: < 0.001) during centrifugation in one exercise type. No sessions were terminated, BORG scoring reflected a relevant training intensity and no significant increase in motion sickness was reported during centrifugation. Thus, exercising trunk muscles during centrifugation generates comparable targeted muscular and heart rate response and appears to be well tolerated. Differences in blood pressure were relatively minor and not indicative of haemodynamic challenge. SAHC-based muscle training is a candidate to reduce microgravity-induced inter-vertebral disc pathology and trunk muscle atrophy. However, further optimization is required prior to performance of a training study for individuals with trunk muscle atrophy/dysfunction.
Astronauten berichten im Rahmen von Raumflügen über Symptome im Sinne von Kinetosen (engl. „(Space) Motion Sickness“), welche innerhalb der ersten 72 Stunden in der Schwerelosigkeit zu teils deutlicher Beeinträchtigung führen 1. Zur Erforschung der Auswirkungen von Schwerelosigkeit werden Parabelflüge durchgeführt, um den Effekt der Mikrogravitation zu untersuchen 2. Auch hierbei leiden die der Schwerelosigkeit ausgesetzten Menschen unter ähnlichen Beschwerden. Die Autoren der vorgestellten Studie versuchen, beobachtend anhand von 246 Parabelflugberichten, das Problem der assoziierten Kinetosen zu erfassen und prädiktive sowie modifizierende Faktoren zu identifizieren.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.