A three‐dimensional numerical analysis was carried out to study in detail the combined heat and mass transfer processes between a moist air flow and a cooled surface when film condensation occurs. A cross‐flow was considered between the air flow and the film flow. A turbulent flow was modelled using the Wilcox k−ω turbulence model. The shape of the interface between the air and the film was treated as a moving boundary, and it was calculated with the assumptions that the interface ways remain an interface, the stress at the interface is continuous and that there is no slip at the interface. Numerical results were obtained by solving simultaneous coupled equations of the air, film and solid. The results show that the condensate film flow has a significant effect on the extended surface temperature distribution and consequently on its efficiency. It is shown that the simultaneous influence of gravity and the air flow on the condensate film results in an asymmetric velocity profile in the film as well as in the asymmetric shape of the film.
Circulating water systems (CW) and safety water systems (SW) in various power plants use vertical pumps to pump water from pump intakes. A properly designed pump intake structure prevents the occurrence of strong surface vortices, which might inhibit the proper functioning of the pump. Although several standards for experimental testing of pump intake structure suitability exist, our goal is to find a way to predict such vortices numerically, from a single-phase simulation. In such a process, we had already eliminated some of the turbulence models. In the current paper we confirm that Scale Adaptive Simulation (SAS) turbulence model with the curvature correction (CC) factor applied is well suited for such flows. By using a methodology for determining the vortex air core length, the SAS-CC turbulence model results were compared to the experimental data for two selected temperatures. The results show better agreement than the laminar simulations in terms of higher mean value accuracy and lower scattering.
Detached turbulent flows are difficult to predict numerically and often serve as benchmark cases for developing new numerical schemes and new turbulent models. Turbulent flow over periodic hills is one such examples, since the flow exhibits separation and reattachment on a smoothly and/or sharp curved geometry, strong pressure gradients and fluctuation of the separation point in time. These cases have been chosen by many authors for testing different turbulence simulation approaches. When the bottom wall is heated, the complexity of the problem increased, since convective heat transfer is defined by small scale turbulent structures close to the wall. We developed a Reynolds-Averaged Navier-Stokes and Large Eddy Simulation solver based on the velocity-vorticity formulation of Navier Stokes equations. RANS equations are coupled by a low-Reynolds number turbulent model, while Smagorinsky subgrid model is used for LES. The governing equations are solved with a numerical solution algorithm, which is based on the boundary element method. The pressure field is computed in a post processing step by solving a Poisson equation. The single domain as well as domain decomposition approaches are applied. The developed method was validated using flow over periodic hills test case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.