Plants grow in communities where they interact with other plants and with other living organisms such as pollinators. On the one hand, studies of plant–plant interactions rarely consider how plants interact with other trophic levels such as pollinators. On the other, studies of plant–animal interactions rarely deal with interactions within trophic levels such as plant–plant competition and facilitation. Thus, to what degree plant interactions affect biodiversity and ecological networks across trophic levels is poorly understood. We manipulated plant communities driven by foundation species facilitation and sampled plant–pollinator networks at fine spatial scale in a field experiment in Sierra Nevada, Spain. We found that plant–plant facilitation shaped pollinator diversity and structured pollination networks. Nonadditive effects of plant interactions on pollinator diversity and interaction diversity were synergistic in one foundation species networks while they were additive in another foundation species. Nonadditive effects of plant interactions were due to rewiring of pollination interactions. In addition, plant facilitation had negative effects on the structure of pollination networks likely due to increase in plant competition for pollination. Our results empirically demonstrate how different network types are coupled, revealing pervasive consequences of interaction chains in diverse communities.
Insect pollinators are a key component of biodiversity; they also play a major role in the reproduction of many species of wild plants and crops. It is widely acknowledged that insect pollinators are threatened by many environmental pressures, mostly of anthropogenic nature. Their decline is a global phenomenon. A better understanding of their distribution can help their monitoring and ultimately facilitate conservation actions. Since we only have partial knowledge of where pollinator species occur, the possibility to predict suitable environmental conditions from scattered species records can facilitate not only species monitoring, but also the identification of areas potentially vulnerable to pollinators decline. This data paper contains the predicted distribution of 47 species of bumblebees across the 28 Member States of the European Union (EU-28). Amongst the wild pollinators, bumblebees are one of the major groups contributing to the production of many crop species, hence their decline in Europe, North America and Asia can potentially threaten food security. Predictions were derived from distribution models, using species records with a spatial resolution of 10 km accessed from a central repository. Predictions were based on records from 1991 to 2012 and on a series of spatial environmental predictors from three main thematic areas: land use and land cover, climate and topography. These distributions were used to estimate the value of pollination as an ecosystem service. In light of the recent European Pollinators Initiative, this paper provides valuable information for a better understanding of where wild pollinators occur and it should be extended to other pollinator species.
1. Climate change is expected to produce shifts in species distributions as well as behavioural, life‐history, and/or morphological adaptations to find suitable conditions or cope with the altered environment. Most of our knowledge on this issue comes from studies on vertebrates, mainly endotherm species. However, it remains uncertain how small ectotherms, such as insects, respond to increased temperature.2. This study tested whether climate change over the last 100 years (1904–2013) has affected morphological and functional traits in workers of the social wasp Dolichovespula sylvestris in the Iberian Peninsula.3. Head width and forewing length, as well as body mass and wing area (assuming no change in shape), decreased over time and with increased mean annual temperature, even when controlling for geographical location and altitude. Interestingly, wing size decreased with a steeper slope compared with body size. If there is no change in wing shape, this would lead to an invariable wing loading (body mass:wing area ratio) over time, with potential consequences on flying ability of more recent (and thus smaller) wasp individuals.4. These results suggest that recent climate change is leaving morphological signatures in social wasps, increasing the evidence for this phenomenon in insects. The data furthermore suggest that the known efficient thermoregulatory ability of social insect colonies may not successfully buffer the effect of global warming.
Their morphological and ecological features are described according to their widespread but isolated distribution. Quantitative immunological analyses emphasize the close affinities of the 5 proposed subspecies and their more distant relationships to P. palluma which is sympatric with P. patagonicus in Mendoza and Neuquén.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.