Field studies were conducted to compare the barnyardgrass suppression by four U.S. (‘Starbonnet’, ‘Kaybonnet’, ‘Lemont’, and ‘Cypress’) and three highly competitive, high-yielding Asian cultivars (‘PI 312777′, ‘Guichao’, and ‘Teqing’). The economic consequence of applying less than the recommended propanil rates to these cultivars was also evaluated. Grain yields increased, and barnyardgrass biomass decreased with increasing propanil rates. With or without propanil, the Asian rice cultivars consistently suppressed barnyardgrass more and consequently produced higher grain yields than did U.S. cultivars. The economic benefit derived from propanil application was less for Asian than for U.S. cultivars. Asian cultivars produced higher rough rice yields, resulting in higher net returns (not adjusted for milling) than did the commercial cultivars, but this advantage was usually reduced when adjusting for their lower milling yields. These results suggest that growing weed-suppressive Asian rice cultivars in conjunction with reduced herbicide rates could be an effective and economical weed management strategy for rice in the southern United States. However, first, their plant type and grain quality characteristics must be improved.
Red rice, which grows taller and produces more tillers than domestic rice and shatters most of its seeds early, is a major weed in many rice-growing areas of the world. Field experiments were conducted at Stuttgart, AR in 1997 and 1998 to evaluate the growth response of the Kaybonnet (KBNT) rice cultivar to various population densities of three red rice ecotypes. The ecotypes tested were Louisiana3 (LA3), Stuttgart strawhull (Stgstraw), and Katy red rice (KatyRR). Compared with KBNT alone, LA3, the tallest of the three red rice ecotypes, reduced tiller density of KBNT 51%, aboveground biomass at 91 d after emergence (DAE) 35%, and yield 80%. Stgstraw, a medium-height red rice, reduced KBNT tiller density 49%, aboveground biomass 26%, and yield 61%. KatyRR, the shortest red rice, reduced KBNT tiller density 30%, aboveground biomass 16%, and yield 21%. Tiller density of rice was reduced by 20 to 48% when red rice density increased from 25 to 51 plants m−2. Rice biomass at 91 DAE was reduced by 9 and 44% when red rice densities were 16 and 51 plants m−2. Rice yield was reduced by 60 and 70% at red rice densities of 25 and 51 plants m−2, respectively. These results demonstrate that low populations of red rice can greatly reduce rice growth and yield and that short-statured red rice types may affect rice growth less than taller ecotypes.
A replacement series study was conducted in a greenhouse in 1998 and 1999 to evaluate the interference interactions among two rice cultivars and two red rice ecotypes. Plants were established in proportions of 3:0, 2:1, 1:2, and 0:3 (rice–red rice) plants/pot. Relative yield of Kaybonnet based on the shoot dry weight was lower than that of KatyRR or LA3, whereas PI 312777 was comparable to that of KatyRR and LA3. These results indicate that Kaybonnet was less competitive than PI 312777 when contrasted with KatyRR and LA3 red rice ecotypes. Kaybonnet (commercial rice cultivar) was dominated by both KatyRR (suspected rice × red rice cross) and LA3 (tall red rice ecotype) in tiller production, whereas PI 312777 (weed-suppressive cultivar) was comparable to either KatyRR or LA3. Both KatyRR and LA3 considerably reduced the leaf area of Kaybonnet. In contrast, PI 312777 reduced the growth of KatyRR, and its leaf area was comparable to that of LA3. The data suggest that high tillering capacity, as demonstrated by PI 312777, should be considered when breeding for rice cultivars that are competitive against weeds. This agronomic characteristic of rice may improve the success of reduced herbicide rate application programs.
Field experiments were conducted at the Rice Research and Extension Center at Stuttgart, AR, in 1997 and 1998 to evaluate the growth response of Stuttgart strawhull (Stgstraw) red rice to sowing densities of 0, 50, 100, and 150 kg ha−1of ‘Kaybonnet,’ ‘Guichao,’ and ‘PI 312777’ rice cultivars. PI 312777 produced a greater leaf area index and tiller density than Kaybonnet when grown with red rice. In 1997, Stgstraw seed yields were lower when grown with PI 312777 and Guichao than with Kaybonnet. The increased weed population in 1998 did not increase seed yield production of red rice when grown with the three rice cultivars. The Stgstraw red rice seed yield was reduced when grown with 50 kg ha−1rice when compared with its yield in monoculture and was reduced further when grown with 100 and 150 kg ha−1rice. These results demonstrate that red rice was more competitive when compared with the tropicaljaponicaKaybonnet than theindicaPI 312777. Despite its semidwarf stature, PI 312777 tended to suppress red rice more than did Guichao or Kaybonnet. The mechanisms responsible for this difference could be important keys to the effective use of weed-suppressive cultivars in reduced herbicide input systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.