It has recently been demonstrated that in vivo administration of murine interleukin 12 (IL-12) to mice results in augmentation of cytotoxic natural killer (NK)/lymphocyte-activated killer cell activity, enhancement of cytolytic T cell generation, and induction of interferon gamma secretion. In this study, the in vivo activity of murine IL-12 against a number of murine tumors has been evaluated. Experimental pulmonary metastases or subcutaneous growth of the B16F10 melanoma were markedly reduced in mice treated intraperitoneally with IL-12, resulting in an increase in survival time. The therapeutic effectiveness of IL-12 was dose dependent and treatment of subcutaneous tumors could be initiated up to 14 d after injection of tumor cells. Likewise, established experimental hepatic metastases and established subcutaneous M5076 reticulum cell sarcoma and Renca renal cell adenocarcinoma tumors were effectively treated by IL-12 at doses which resulted in no gross toxicity. Local peritumoral injection of IL-12 into established subcutaneous Renca tumors resulted in regression and complete disappearance of these tumors. IL-12 was as effective in NK cell-deficient beige mice or in mice depleted of NK cell activity by treatment with antiasialo GM1, suggesting that NK cells are not the primary cell type mediating the antitumor effects of this cytokine. However, the efficacy of IL-12 was greatly reduced in nude mice suggesting the involvement of T cells. Furthermore, depletion of CD8+ but not CD4+ T cells significantly reduced the efficacy of IL-12. These results demonstrate that IL-12 has potent in vivo antitumor and antimetastatic effects against murine tumors and demonstrate as well the critical role of CD8+ T cells in mediating the antitumor effects against subcutaneous tumors.
Notch signaling is an area of great interest in oncology. RO4929097 is a potent and selective inhibitor of γ-secretase, producing inhibitory activity of Notch signaling in tumor cells. The RO4929097 IC50 in cell-free and cellular assays is in the low nanomolar range with >100-fold selectivity with respect to 75 other proteins of various types (receptors, ion channels, and enzymes). RO4929097 inhibits Notch processing in tumor cells as measured by the reduction of intracellular Notch expression by Western blot. This leads to reduced expression of the Notch transcriptional target gene Hes1. RO4929097 does not block tumor cell proliferation or induce apoptosis but instead produces a less transformed, flattened, slower-growing phenotype. RO4929097 is active following oral dosing. Antitumor activity was shown in 7 of 8 xenografts tested on an intermittent or daily schedule in the absence of body weight loss or Notch-related toxicities. Importantly, efficacy is maintained after dosing is terminated. Angiogenesis reverse transcription-PCR array data show reduced expression of several key angiogenic genes. In addition, comparative microarray analysis suggests tumor cell differentiation as an additional mode of action. These preclinical results support evaluation of RO4929097 in clinical studies using an intermittent dosing schedule. A multicenter phase I dose escalation study in oncology is under way.
Non-small cell lung cancers (NSCLC) with activating EGFR mutations become resistant to tyrosine kinase inhibitors (TKI), often through second-site mutations in EGFR (T790M) and/or activation of the cMet pathway. We engineered a bispecific EGFR-cMet antibody (JNJ-61186372) with multiple mechanisms of action to inhibit primary/secondary EGFR mutations and the cMet pathway. JNJ-61186372 blocked ligand-induced phosphorylation of EGFR and cMet and inhibited phospho-ERK and phospho-AKT more potently than the combination of single receptor-binding antibodies. In NSCLC tumor models driven by EGFR and/or cMet, JNJ-61186372 treatment resulted in tumor regression through inhibition of signaling/ receptor downmodulation and Fc-driven effector interactions. Complete and durable regression of human lung xenograft tumors was observed with the combination of JNJ-61186372 and a third-generation EGFR TKI. Interestingly, treatment of cynomolgus monkeys with JNJ-61186372 resulted in no major toxicities, including absence of skin rash observed with other EGFR-directed agents. These results highlight the differentiated potential of JNJ-61186372 to inhibit the spectrum of mutations driving EGFR TKI resistance in NSCLC.Cancer Res; 76(13); 3942-53. Ó2016 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.