Studies of post-mortem tissue have shown that the location of fibrillar tau deposits, called neurofibrillary tangles (NFT), matches closely with regions of massive neuronal death1,2, severe cytological abnormalities3, and markers of caspase activation and apoptosis4–6, leading to the idea that tangles cause neurodegeneration in Alzheimer’s disease and tau-related frontotemporal dementia. However, using in vivo multiphoton imaging to observe tangles and activation of executioner caspases in living tau transgenic mice (Tg4510 strain), we find the opposite: caspase activation occurs first, and precedes tangle formation by hours to days. New tangles form within a day. After a new tangle forms, the neuron remains alive and caspase activity seems to be suppressed. Similarly, introduction of wild-type 4-repeat tau (Tau-4R) into wild-type animals triggered caspase activation, tau truncation and tau aggregation. Adeno-associated virus-mediated expression of a construct mimicking caspase-cleaved tau into wild-type mice led to the appearance of intracellular aggregates, tangle-related conformational- and phospho-epitopes, and the recruitment of full-length endogenous tau to the aggregates. On the basis of these data, we propose a new model in which caspase activation cleaves tau to initiate tangle formation, then truncated tau recruits normal tau to misfold and form tangles. Because tangle-bearing neurons are long-lived, we suggest that tangles are ‘off pathway’ to acute neuronal death. Soluble tau species, rather than fibrillar tau, may be the critical toxic moiety underlying neurodegeneration.
The regulation of protein degradation is essential for maintaining the appropriate environment to coordinate complex cell signaling events and to promote cellular remodeling. The Autophagy linked FYVE protein (Alfy), previously identified as a molecular scaffold between the ubiquitinated cargo and the autophagic machinery, is highly expressed in the developing central nervous system, indicating that this pathway may have yet unexplored roles in neurodevelopment. To examine this possibility, we used mouse genetics to eliminate Alfy expression. We report that this evolutionarily conserved protein is required for the formation of axonal tracts throughout the brain and spinal cord, including the formation of the major forebrain commissures. Consistent with a phenotype reflecting a failure in axon guidance, the loss of Alfy in mice disrupts localization of glial guidepost cells, and attenuates axon outgrowth in response to Netrin-1. These findings further support the growing indication that macroautophagy plays a key role in the developing CNS.DOI: http://dx.doi.org/10.7554/eLife.14810.001
Arginine vasopressin (AVP) has previously been shown to promote disruption of the blood-brain barrier, exacerbate edema, and augment the loss of neural tissue in various forms and models of brain injury. However, the mechanisms underlying these AVP actions are not well understood. These mechanisms were studied in AVP-deficient Brattleboro rats (Avp(di/di)), and their parental Long-Evans strain, using a controlled cortical impact model of traumatic brain injury (TBI). The increased influx of inflammatory cells into the injured cortex in wild-type versus Avp(di/di) rats was associated with higher levels of cortical synthesis of the CXC and CC chemokines found in wild-type versus Avp(di/di) rats. These chemokines were predominantly produced by the cerebrovascular endothelium and astrocytes. In astrocyte and brain endothelial cell cultures, AVP acted synergistically with tumor necrosis factor-alpha (TNF-alpha) to increase the TNF-alpha-dependent production of CXC and CC chemokines. These AVP actions were mediated by c-Jun N-terminal kinase (JNK), as shown by Western blotting and pharmacological inhibition of JNK activity. The activity of JNK was increased in response to injury, and the differences in the magnitude of its post-traumatic activation between Avp(di/di) and wild-type rats were observed. These data demonstrate that AVP plays an important role in exacerbating the brain inflammatory response to injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.