Purpose Understanding the etiology of cancer-related fatigue (CRF) is critical to identify targets to develop therapies to reduce CRF burden. The goal of this systematic review was to expand on the initial work by the National Cancer Institute CRF Working Group to understand the state of the science of the biology of CRF. Specifically, to evaluate studies that examined the relationships between biomarkers and CRF, and to develop an etiologic model of CRF to guide researchers on pathways to explore or therapeutic targets to investigate. Methods This review was completed by the Multinational Association of Supportive Care in Cancer Fatigue Study Group – Biomarker Working Group. The initial search used three terms (biomarkers, fatigue, cancer), which yielded 11,129 articles. After removing duplicates, 7,175 articles remained. Titles were assessed for the keywords, “cancer” and “fatigue” resulting in 3,811 articles. Articles published before 2010 and those with samples <50 were excluded, leaving 75 articles for full-text review. Of the 75 articles, 25 were further excluded for not investigating the associations of biomarkers and CRF. Results Of the 47 articles reviewed, 25 were cross-sectional and 22 were longitudinal studies. Less than half (44%) were published recently (2010-2013). Almost half (46%) enrolled breast cancer participants. A majority of studies assessed fatigue using self-report questionnaires, and only two studies used clinical parameters to measure fatigue. Conclusions The findings from this review suggest that CRF is linked to immune/inflammatory, metabolic, neuroendocrine, and genetic biomarkers. We also identified gaps in knowledge and made recommendations for future research.
Fatigue is often described by patients as a lack of energy, mental or physical tiredness, diminished endurance, and prolonged recovery after physical activity. Etiologic mechanisms underlying fatigue are not well understood; however, fatigue is a hallmark symptom of mitochondrial disease, making mitochondrial dysfunction a putative biological mechanism for fatigue. Therefore, this review examined studies that investigated the association of markers of mitochondrial dysfunction with fatigue and proposes possible research directions to enhance understanding of the role of mitochondrial dysfunction in fatigue. A thorough search using PubMed, Scopus, Web of Science, and Embase databases returned 1,220 articles. After application of inclusion and exclusion criteria, a total of 25 articles meeting eligibility criteria were selected for full review. Dysfunctions in the mitochondrial structure, mitochondrial function (mitochondrial enzymes and oxidative/nitrosative stress), mitochondrial energy metabolism (ATP production and fatty acid metabolism), immune response, and genetics were investigated as potential contributors to fatigue. Carnitine was the most investigated mitochondrial function marker. Dysfunctional levels were reported in all the studies investigating carnitine; however, the specific type of carnitine that was dysfunctional varied. Genetic profiles were the second most studied mitochondrial parameter. Six common pathways were proposed: metabolism, energy production, protein transport, mitochondrial morphology, central nervous system dysfunction and post-viral infection. Coenzyme Q10 was the most commonly investigated mitochondrial enzyme. Low levels of Coenzyme Q10 were consistently associated with fatigue. Potential targets for further investigation were identified as well as gaps in the current literature.
One consequence of modern cancer therapy is chemotherapy related cognitive dysfunction or “chemobrain”, the subjective experience of cognitive deficits at any point during or following chemotherapy. Chemobrain, a well-established clinical syndrome, has become an increasing concern because the number of long-term cancer survivors is growing dramatically. There is strong evidence that correlates changes in peripheral cytokines with the development of chemobrain in commonly used chemotherapeutic drugs for different types of cancer. However, the mechanisms by which these cytokines elicit change in the central nervous system are still unclear. In this review, we hypothesize that the administration of chemotherapy agents initiates a cascade of biological changes, with short-lived alterations in the cytokine milieu inducing persistent epigenetic alterations. These epigenetic changes lead to changes in gene expression, alterations in metabolic activity and neuronal transmission that are responsible for generating the subjective experience of cognition. This speculative but testable hypothesis should help to gain a comprehensive understanding of the mechanism underlying cognitive dysfunction in cancer patients. Such knowledge is critical to identify pharmaceutical targets with the potential to prevent and treat cancer-treatment related cognitive dysfunction and similar disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.