Summary1. An international group of scientists has built an open internet data base of life-history traits of the Northwest European flora (the LEDA-Traitbase) that can be used as a data source for fundamental research on plant biodiversity and coexistence, macro-ecological patterns and plant functional responses. 2. The species-trait matrix comprises referenced information under the control of an editorial board, for ca. 3000 species of the Northwest European flora, combining existing information and additional measurements. The data base currently contains data on 26 plant traits that describe three key features of plant dynamics: persistence, regeneration and dispersal. The LEDA-Traitbase is freely available at www.leda-traitbase.org. 3. We present the structure of the data base and an overview of the trait information available. 4. Synthesis. The LEDA Traitbase is useful for large-scale analyses of functional responses of communities to environmental change, effects of community trait composition on ecosystem properties and patterns of rarity and invasiveness, as well as linkages between traits as expressions of fundamental trade-offs in plants.
The occurrence of nonfunctional trnF pseudogenes has been rarely described in flowering plants. However, we describe the first large-scale supernetwork for the Brassiccaeae built from gene trees for 5 loci (adh, chs, matK, trnL-F, and ITS) and report multiple independent origins for trnF pseudogenes in crucifers. The duplicated regions of the original trnF gene are comprised of its anticodon domain and several other highly structured motifs not related to the original gene. Length variation of the trnL-F intergenic spacer region in different taxa ranges from 219 to 900 bp as a result of differences in pseudocopy number (1-14). It is speculated that functional constraints favor 2-3 or 5-6 copies, as found in Arabidopsis and Boechera. The phylogenetic distribution of microstructural changes for the trnL-F region supports ancient patterns of divergence in crucifer evolution for some but not all gene loci.
Numbers of plant species were recorded in speciesrich meadows in the Bílé Karpaty Mts., SE Czech Republic, with the aim to evaluate the sampling error made by well-trained observers. Five observers recorded vascular plants in seven plots ranging from 9.8 cm 2 to 4 m 2 independently and were not time-limited. In larger plots a discrepancy of 10-20% was found between individual estimates, in smaller plots discrepancy increased to 33%, on average. The gain in observed species richness by combining records of individual observers (in comparison with the mean numbers estimated by single observers) decreased from the smallest plot (27-82% for two to five observers) to the largest one (13-25%). However, after misidentified and suspicious records were eliminated, the gain was much lower and became scale-independent; two observers added 12% species, on average, and the increase by combining species lists made by three or more observers was negligible (3% more on average). It is concluded that most discrepancies between individual observers were caused by misidentification of rare seedlings and young plants. We suggest that in species-rich meadows plants should be recorded by at least three observers together and that they should consult all problematic plant specimens together in the field, to minimize errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.