Cardiac myosin-binding protein C (cMyBP-C) interacts with actin and myosin to modulate cardiac contractility. These interactions are regulated by cMyBP-C phosphorylation. Heart failure patients often have decreased cMyBP-C phosphorylation and phosphorylation in model systems appears to be cardioprotective for heart failure. Therefore, cMyBP-C is a potential target for heart failure drugs that mimic phosphorylation and/or perturb its interactions with actin/myosin. We have used a novel fluorescence lifetime-based assay to identify small-molecule inhibitors of actin-cMyBP-C binding. Actin was labeled with a fluorescent dye (Alexa Fluor 568, AF568) near its cMyBP-C binding sites. When combined with cMyBP-C N-terminal fragment, C0-C2, the fluorescence lifetime of AF568-actin decreases. Using this reduction in lifetime as a readout of actin binding, a high-throughput screen of a 1280-compound library identified 3 reproducible Hit compounds that reduced C0-C2 binding to actin in the micromolar range. Binding of phosphorylated C0-C2 was also blocked by these compounds. That they specifically block binding was confirmed by a novel actin-C0-C2 time-resolved FRET (TR-FRET) binding assay. Isothermal titration calorimetry (ITC) and transient phosphorescence anisotropy (TPA) confirmed that the Hit compounds bind to cMyBP-C but not to actin. TPA results were also consistent with these compounds inhibiting C0-C2 binding to actin. We conclude that the actin-cMyBP-C lifetime assay permits detection of pharmacologically active compounds that affect cMyBP-C's actin binding function. TPA, TR-FRET, and ITC can then be used to understand the mechanism by which the compounds alter cMyBP-C interactions with actin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.