Since the outbreak of 2019 novel coronavirus infection (2019-nCoV) in Wuhan City, China, by January 30, 2020, a total of 9692 confirmed cases and 15,238 suspected cases have been reported around 31 provinces or cities in China. Among the confirmed cases, 1527 were severe cases, 171 had recovered and been discharged at home, and 213 died. And among these cases, a total of 28 children aged from 1 month to 17 years have been reported in China. For standardizing prevention and management of 2019-nCoV infections in children, we called up an experts' committee to formulate this experts' consensus statement. This statement is based on the Novel Coronavirus Infection Pneumonia Diagnosis and Treatment Standards (the fourth edition) (National Health Committee) and other previous diagnosis and treatment strategies for pediatric virus infections. The present consensus statement summarizes current strategies on diagnosis, treatment, and prevention of 2019-nCoV infection in children.
In the early February, 2020, we called up an experts' committee with more than 30 Chinese experts from 11 national medical academic organizations to formulate the first edition of consensus statement on diagnosis, treatment and prevention of coronavirus disease 2019 (COVID-19) in children, which has been published in this journal. With accumulated experiences in the diagnosis and treatment of COVID-19 in children, we have updated the consensus statement and released the second edition recently. The current version in English is a condensed version of the second edition of consensus statement on diagnosis, treatment and prevention of COVID-19 in children. In the current version, diagnosis and treatement criteria have been optimized, and early identification of severe and critical cases is highlighted. The early warning indicators for severe pediatric cases have been summarized which is utmost important for clinical practice. This version of experts consensus will be valuable for better prevention, diagnosis and treatment of COVID-19 in children worldwide.
Adult Leydig cells (ALCs) are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs). SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH) receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs), the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH) and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC). This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.
Serum testosterone (TS) levels decrease with aging in both humans and rodents. Using the rat as a model system, it was found that age-related reductions in serum TS were not due to loss of Leydig cells, but rather to the reduced ability of the Leydig cells to produce TS in response to luteinizing hormone (LH). Detailed analyses of the steroidogenic pathway have suggested that two defects along the pathway, LH-stimulated cAMP production and cholesterol transport to and into the mitochondria, are of particular importance in age-related reductions in TS production. Although the mechanisms involved in these defects are far from certain, increasing oxidative stress appears to play a particularly important role. Interestingly, increased oxidative stress also appears to be involved in the suppressive effects of endocrine disruptors on Leydig cell TS production.Reproduction (2017) 154 R111-R122
The Leydig cells of the testis have the capacity to biosynthesize testosterone from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone are critical for the development of male reproductive system and spermatogenesis. At least four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side chain cleavage enzyme (CYP11A1) for the conversion of cholesterol into pregnenolone within the mitochondria, 3β-hydroxysteroid dehydrogenase (HSD3B), for the conversion of pregnenolone into progesterone, 17α-hydroxylase/17,20-lyase (CYP17A1) for the conversion of progesterone into androstenedione and 17β-hydroxysteroid dehydrogenase (HSD17B3) for the formation of testosterone from androstenedione. Testosterone is also metabolically activated into more potent androgen dihydrotestosterone by two isoforms 5α-reductase 1 (SRD5A1) and 2 (SRD5A2) in Leydig cells and peripheral tissues. Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone) and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and prochloraz) and plant constituents (genistein and gossypol). This paper reviews these endocrine disruptors targeting steroidogenic enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.