Abstract. Arsenic trioxide (As 2 O 3 ) has been widely used in the treatment of acute promyelocytic leukemia and has been observed to exhibit therapeutic effects in various types of solid tumor. In a previous study by this group, it was shown that As 2 O 3 induces the apoptosis of MCF-7 breast cancer cells through inhibition of the human ether-à-go-go-related gene (hERG) channel. The present study was designed to further investigate the effect of As 2 O 3 on breast cancer cells and to examine the mechanism underlying the regulation of hERG expression. The present study confirmed that As 2 O 3 inhibited tumor growth in vivo, following MCF-7 cell implantation into nude mice. Using computational prediction , it was identified that microRNA (miR)-328 had a binding site in the 3'-untranslated region of hERG mRNA. A luciferase activity assay demonstrated that hERG is a target gene of miR-328. Further investigation using western blot analysis and reverse transcription-quantitative polymerase chain reaction revealed that As 2 O 3 downregulated hERG expression via upregulation of miR-328 expression in MCF-7 cells. In conclusion, As 2 O 3 was observed to inhibit breast cancer cell growth, at least in part, through the miR-328/hERG pathway.
This paper presents a data-driven virtual inertia control method for doubly fed induction generator (DFIG)-based wind turbine to provide inertia support in the presence of frequency events. The Markov parameters of the system are first obtained by monitoring the grid frequency and system operation state. Then, a data-driven state observer is developed to evaluate the state vector of the optimal controller. Furthermore, the optimal controller of the inertia emulation system is developed through the closed solution of the differential Riccati equation. Moreover, a differential Riccati equation with self-correction capability is developed to enhance the anti-noise ability to reject noise interference in frequency measurement process. Finally, the simulation verification was performed in Matlab/Simulink to validate the effectiveness of the proposed control strategy. Simulation results showed that the proposed virtual inertia controller can adaptively tune control parameters online to provide transient inertia supports for the power grid by releasing the kinetic energy, so as to improve the robustness and anti-interference ability of the control system of the wind power system.
An enhanced measurement of the microwave (MW) electric (E) field is proposed using an optical grating in Rydberg atoms. Electromagnetically induced transparency (EIT) of Rydberg atoms appears driven by a probe field and a control field. The EIT transmission spectrum is modulated by an optical grating. When a MW field drives the Rydberg transition, the central principal maximum of the grating spectrum splits. It is interesting to find that the magnitude of the sharp grating spectrum changes linearly with the MW E-field strength, which can be used to measure the MW E-field. The simulation result shows that the minimum detectable E-field strength is nearly 1/8 of that without gratings, and its measurement accuracy could be enhanced by about 60 times. Other discussion of MW metrology based on a grating spectrum is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.