Our study demonstrated that browning of aPVAT in HFD-fed rats lowered the pro-inflammatory adipokine expression levels and activated AMPK.
Migrasomes are migration-dependent membrane-bound vesicular structures that contain cellular contents and small vesicles. Migrasomes grow on the tips or intersections of the retraction fibers after cells migrate away. The process of releasing migrasomes into the extracellular space is named as “migracytosis”. After releasing, they can be taken up by the surrounding cells, or rupture and further release their contents into the extracellular environment. Physiologically, migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation and discard the damaged mitochondria in response to mild mitochondrial stresses. Pathologically, migrasomes are released from podocyte during early podocyte stress and/or damage, from platelets after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from microglia/macrophages of the ischemic brain, and from tumor necrosis factor α (TNFα)-activated endothelial cells (ECs); thus, this newly discovered extracellular vesicle is involved in all these pathological processes. Moreover, migrasomes can modulate the proliferation of cancer cell via lateral transferring mRNA and protein. In this review, we will summarize the biogenesis, release, uptake, and rupture of migrasomes and discuss its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology, all of these highlight the importance of migrasomes in modulating body homeostasis and diseases.
Protectants and executioners have been demonstrated to be used by gap junctions in focal cerebral ischemia. Certain researchers hypothesized that the opposite role of gap junctions may be associated with the injury extent, which has been demonstrated to be highly correlated with occlusion duration. In order to examine this hypothesis directly, the effects of octanol, a frequently used drug, were examined to investigate the role of gap junctions, in rats following middle cerebral artery occlusion (MCAO) for 30 min/2 h and 24 h reperfusion, respectively. Octanol significantly reduced the infarct volume following 2 h of occlusion concomitant with lower neurological deficits, whereas it enlarged the infarct volume following 30 min of occlusion. Consistently, octanol attenuated the number of transferase dUTP nick-end labeling (TUNEL) positive neurons in the hippocampal CA1 region following 2 h of occlusion, while opposite effects were observed for 30 min of occlusion. Further immunohistochemical studies demonstrated that the expression of B-cell leukemia-2 (Bcl-2, anti-apoptotic protein) was upregulated and that Bcl-2-associated X (Bax, proapoptotic protein) was downregulated following 2 h of occlusion in the octanol group compared with the ischemic group. Conversely, octanol downregulated the expression of the Bcl-2 protein concomitant with increased Bax protein following 30 min of occlusion. These results indicated that the gap junction blocker octanol can protect against ischemic injury following long-term occlusion, however, can aggravate ischemic injury following short-term occlusion.
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Objective: Synaptic plasticity is critical for neurorehabilitation after focal cerebral ischemia. Connexin 43 (Cx43), the main component of the gap junction, has been shown to be pivotal for synaptic plasticity. The objective of this study was to investigate the role of the Cx43 inhibitor (Gap26) and gap junction modifier (GAP-134) in neurorehabilitation and to study their contribution to synaptic plasticity after focal ischemia. Methods: Time course expression of both total and phosphorylated Cx43 (p-Cx43) were detected by western blotting at 3, 7, and 14 d after focal ischemia. Gap26 and GAP-134 were administered starting from 3 d post focal ischemia. Neurological performances were evaluated by balance beam walking test and Y-maze test at 1, 3, and 7 d. Golgi staining and transmission electron microscope (TEM) detection were conducted at 7 d for observing dendritic spine numbers and synaptic ultrastructure, respectively. Immunofluorescent staining was used at 7 d for detection of synaptic plasticity markers, including synaptophysin (SYN) and growth-associated protein-43 (GAP-43). Results: Expression levels of both total Cx43 and p-Cx43 were increased after focal cerebral ischemia, peaking at 7 d. Compared with the MCAO group, Gap26 worsened the neurological behavior and decreased the dendritic spine number while GAP-134 improved the neurobehavior and increased the number of dendritic spines. Moreover, Gap26 further destroyed the synaptic structure, concomitant with downregulated SYN and GAP-43, whereas GAP-134 alleviated synaptic destruction and upregulated SYN and GAP-43. Conclusion: These findings suggested that Cx43 or the gap junction was involved in synaptic plasticity, thereby promoting neural recovery after ischemic stroke. Treatments enhancing gap junctions may be potential promising therapeutic measures for neurorehabilitation after ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.