Rapid advances in single-cell genomics sequencing (SCGS) have allowed researchers to characterize tumor heterozygosity with unprecedented resolution and reveal the phylogenetic relationships between tumor cells or clones. However, high sequencing error rates of current SCGS data, i.e., false positives, false negatives, and missing bases, severely limit its application. Here, we present a deep learning framework, RDAClone, to recover genotype matrices from noisy data with an extended robust deep autoencoder, cluster cells into subclones by the Louvain-Jaccard method, and further infer evolutionary relationships between subclones by the minimum spanning tree. Studies on both simulated and real datasets demonstrate its robustness and superiority in data denoising, cell clustering, and evolutionary tree reconstruction, particularly for large datasets.
Spatially resolved transcriptomics (SRT) enable the comprehensive characterization of transcriptomic profiles in the context of tissue microenvironments. Unveiling spatial transcriptional heterogeneity needs to effectively incorporate spatial information accounting for the substantial spatial correlation of expression measurements. Here, we develop a computational method, SpaSRL (spatially aware self-representation learning), which flexibly enhances and decodes spatial transcriptional signals to simultaneously achieve spatial domain detection and spatial functional genes identification. This novel tunable spatially aware strategy of SpaSRL not only balances spatial and transcriptional coherence for the two tasks, but also can transfer spatial correlation constraint between them based on a unified model. In addition, this joint analysis by SpaSRL deciphers accurate and fine-grained tissue structures and ensures the effective extraction of biologically informative genes underlying spatial architecture. We verified the superiority of SpaSRL on spatial domain detection, spatial functional genes identification and data denoising using multiple SRT datasets obtained by different platforms and tissue sections. Our results illustrate SpaSRL’s utility in flexible integration of spatial information and novel discovery of biological insights from spatial transcriptomic datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.