Abstract-Reactive oxygen species including superoxide and hydrogen peroxide are important mediators in atherogenesis.We investigated the enzymatic source of vascular superoxide and its role in endothelium-dependent vasorelaxation during neointima formation. Silastic collars positioned around carotid arteries of rabbits for 14 days induced neointimal thickening. Using lucigenin-enhanced chemiluminescence, superoxide production was detectable in collared artery sections, but not in controls, only after inactivation of endogenous Cu 2ϩ /Zn 2ϩ -superoxide dismutase (Cu 2ϩ /Zn 2ϩ -SOD) with diethyldithiocarbamate (DETCA). Dihydroethidium staining indicated that endothelium and adventitia were the major sites of superoxide generation. Superoxide production in DETCA-treated collared arteries was enhanced further by NADPH and was inhibited by diphenyleneiodonium, suggesting NADPH oxidase was the source of the radical in collared arteries. Moreover, real-time PCR demonstrated 11-fold higher expression of the gp91phox subunit of NADPH oxidase in collared arteries than in controls. In vascular reactivity studies, endothelium-dependent vasorelaxation to acetylcholine did not differ between collared and control sections. However, treatment with DETCA reduced relaxations to acetylcholine in collared rings, but not in controls. NADPH further reduced relaxations to acetylcholine in DETCA-treated collared sections, but not in controls. In DETCA/NADPH-treated collared rings, sensitivity to nitroprusside, in contrast to acetylcholine, exceeded that of controls. Moreover, further treatment of such rings with exogenous Cu 2ϩ /Zn 2ϩ -SOD restored acetylcholine relaxations without altering nitroprusside responses. Thus, early neointimal lesions induced by periarterial collars are associated with elevated gp91phox expression and increased NAPDH-oxidase-dependent superoxide production in endothelium and adventitia. However, endothelium-dependent vasorelaxation is largely preserved due to the actions of Cu 2ϩ /Zn 2ϩ -SOD and increased smooth muscle sensitivity to nitric oxide. Not only is superoxide production increased in atherosclerotic arteries from humans, 1 rabbits, 2 and mice, 3 but ROS have also been shown to induce many proatherogenic cellular responses in vitro. These include inactivating endothelium-derived nitric oxide, 4 inducing endothelial cell apoptosis, 5 upregulating endothelial cell adhesion molecule expression, 6 stimulating the proliferation and migration of vascular smooth muscle cells, 7 and oxidatively modifying lipoproteins. 8 To our knowledge, only one study has attempted to characterize the oxidase responsible for superoxide production in atherosclerotic lesions. Warnholtz et al 9 demonstrated that superoxide production in aortas from Watanabe heritable hyperlipidemic and cholesterol-fed rabbits was markedly higher than that in controls. The enzyme responsible for superoxide production in these atherosclerotic arteries was membrane-associated, stimulated by NADH and NADPH, and inhibited by the flavoprotein inhib...
1. Vascular cells have evolved to use reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, as signalling molecules. Under physiological conditions, ROS are important regulators of cell cycle, protein kinase activity and gene expression. However, in vascular disease states, such as hypertension and hypercholesterolaemia, excessive production of ROS may overwhelm the anti-oxidant defence mechanisms of cells, resulting in 'oxidative stress', damage to the artery wall and, ultimately, development of atherosclerotic plaques. 2. The primary source of ROS in the vasculature is NADPH oxidase. There appear to be at least three isoforms of NADPH oxidase expressed in the vascular wall, each differing with respect to the flavin-containing catalytic subunit it uses to transfer electrons from NADPH to molecular oxygen. Thus, although endothelial cells and adventitial fibroblasts express a gp91phox-containing NADPH oxidase similar to that originally identified in phagocytes, vascular smooth muscle cells may rely on novel homologues of gp91phox, namely Nox1 and Nox4, to produce superoxide. 3. Controversy remains over which isoform(s) of NADPH oxidase is responsible for the oxidative stress associated with vascular diseases. We and others have shown that although gp91phox mRNA expression is upregulated during atherogenesis in human and animal models, expression of the Nox4 subunit remains unchanged. Nox1 expression is also likely to be increased in diseased arteries; however, its relative level of expression, at least at the mRNA level, appears to be markedly lower than that of the other gp91phox homologues, even after upregulation. 4. Whether these findings suggest that a gp91phox-containing NADPH oxidase is more important than either Nox4 or Nox1 in vascular disease awaits studies examining relative protein expression and enzyme kinetics of each subunit, as well as the effects of targeted gene deletion of each of these gp91phox homologues on atherogenesis.
These cells show no effects on the ability of IFN␥ to activate these complexes. These studies demonstrate that the IFNAR 2 transmembrane (2c) and soluble (2a) isoforms are conserved between the human and mouse and that IFNAR 2c has intrinsic ligand binding activity, but no intrinsic signal transducing activity as measured in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.