The commutation failure (CF) mitigation effectiveness is normally restricted by the delay of extinction angle (EA) measurement or the errors of existing prediction methods for EA or firing angle (FA). For this purpose, this paper proposes a CF mitigation method based on the imaginary commutation process. For each sample point, an imaginary commutation process is constructed to simulate the actual commutation process. Then, the imaginary EA is calculated by comparing the imaginary supply voltage-time area and the imaginary demand voltage-time area, which can update the imaginary EA earlier than the measured EA. In addition, the proposed method considers the impacts of commutation voltage variation, DC current variation, and phase angle shift of commutation voltage on the commutation process, which can ensure a more accurate EA calculation. Moreover, the DC current prediction is proposed to improve the CF mitigation performance under the single-phase AC faults. Finally, the simulation results based on CIGRE model prove that the proposed method has a good performance in CF mitigation.
In inverters based on a single proportional-integral (PI) or deadbeat (DB) controller, an inherent resonance peak may emerge near their current loop cutoff frequency, which results in harmonic amplification or even resonance. Additionally, inappropriate filter circuits implemented in sampling circuits may result in the expansion of the resonance peak. Thus, this paper further investigates the influence of the sampling circuits on a PI-or DB-based control loop. Then, the RC filter in the sampling circuit is designed to reduce the inherent resonance peak. Moreover, a compound control strategy based on an improved repetitive controller (IRC) plus a PI controller is adopted for the grid-side converter of a direct-drive wind system. This strategy enhances the harmonic and reactive compensation performance by reconstructing the internal model of the classic repetitive controller (CRC) and limiting the bandwidth of the PI-based loop to a low level. The parameters of the presented IRC-plus-PI control are designed for the purpose of resonance peak elimination and system stability. Furthermore, the non-integer delay problem is solved with an inserted fraction compensator (FC), which plays the role of a low-pass filter in the IRC. Finally, the feasibility and effectiveness of the presented control method is verified by the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.