Purpose In contaminated streams, understanding the role of streambank and streambed source contributions is essential to developing robust remedial solutions. However, identifying relationships can be difficult because of the lack of identifying signatures in source and receptor pools. East Fork Poplar Creek (EFPC) in Oak Ridge, TN, USA received historical industrial releases of mercury that contaminated streambank soils and sediments. Here, we determined relationships between the contaminated streambank soils and sand-sized streambed sediments. Materials and methods Field surveys revealed the spatial trends of the concentrations of inorganic total mercury (Hg) and methyl mercury (MeHg), Hg lability as inferred by sequential extraction, particle size distribution, and total organic carbon. Statistical tests were applied to determine relationships between streambank soil and streambed sediment properties. Results and discussion Concentrations of Hg in streambank soils in the upper reaches averaged 206 mg kg −1 (all as dry weight) (n = 457), and 13 mg kg −1 in lower reaches (n = 321), while sand-sized streambed sediments were approximately 16 mg kg −1 (n = 57). Two areas of much higher Hg and MeHg concentrations in streambank soils were identified and related to localized higher Hg concentrations in the streambed sediments; however, most of the streambank soils have similar Hg concentrations to the streambed sediments. The molar ratio of Hg to organic carbon, correlation between MeHg and Hg, and particle size distributions suggested similarity between the streambank soils and the fine sand-sized fraction (125-250 μm) collected from the streambed sediments. Mercury in the fine sand-sized streambed sediments, however, was more labile than Hg in the streambank soils, suggesting an in-stream environment that altered the geochemistry of sediment-bound Hg.
As a global environmental pollutant, mercury (Hg) threatens our water resources and presents a substantial risk to human health. The rate and extent of immobilization of Hg2+ (hereafter, Hg) on engineered sorbents (Thiol-SAMMS®, pine biochar, SediMite™, Organoclay™ PM-199, and quartz sand as a control) was evaluated using flow-through column experiments. The effectiveness of the sorbents was based on (1) the percentage of Hg removed in relation to the total amount of Hg passing the sorbent column, and (2) the rate of Hg uptake compared to the nonreactive tracer bromide (Br−). All sorbents removed Hg to a certain extent, but none of the sorbents removed all the Hg introduced to the columns. Thiol-SAMMS showed the highest mean percentage of Hg removed (87% ± 2.9%), followed by Organoclay PM-199 (71% ± 0.4%), pine biochar (57% ± 22.3%), SediMite (61% ± 0.8%), and the control quartz sand (11% ± 5.6%). Thiol-SAMMS was the only sorbent to exhibit retardation of Hg in comparison to the conservative tracer Br−. For the remaining sorbents, Br− along with low concentrations of Hg were eluted within the first 3 pore volumes, indicating limited retardation of Hg. Overall, removal of Hg by sorbents was substantial, suggesting that sorbents might be suitable for deployment in contaminated environments. High concentrations of DOM leaching from the soil columns likely influenced the speciation of Hg and inhibited sorption to the sorbents. Incomplete removal of Hg by any sorbent suggests that additional optimization is needed to increase efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.