We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device, in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ~10 12 molecules at lab speeds as low as 35 m/s and ~ 10 15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O 2 , Cl 2 , NO 2 , NH 3 , and SF 6 .For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when using two merged beams. By closely matching the beam speeds, very low relative collision energies can be attained without making either beam very slow.
We describe modifications of a pulsed rotating supersonic beam source that improve performance, particularly increasing the beam density and sharpening the pulse profiles. As well as providing the familiar virtues of a supersonic molecular beam (high intensity, narrowed velocity distribution, and drastic cooling of rotation and vibration), the rotating source enables scanning the translational velocity over a wide range. Thereby, beams of any atom or molecule available as a gas can be slowed or speeded. Using Xe beams in the slowing mode, we have obtained lab speeds down to about 40 ± 5 m/s with density near 10(11) cm(-3) and in the speeding mode lab speeds up to about 660 m/s and density near 10(14) cm(-3). We discuss some congenial applications. Providing low lab speeds can markedly enhance experiments using electric or magnetic fields to deflect, steer, or further slow polar or paramagnetic molecules. The capability to scan molecular speeds facilitates merging velocities with a codirectional partner beam, enabling study of collisions at very low relative kinetic energies, without requiring either beam to be slow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.