Much can be at stake depending on the choice of words used to describe citizen science, because terminology impacts how knowledge is developed. Citizen science is a quickly evolving field that is mobilizing people's involvement in information development, social action and justice, and large-scale information gathering. Currently, a wide variety of terms and expressions are being used to refer to the concept of 'citizen science' and its practitioners. Here, we explore these terms to help provide guidance for the future growth of this field. We do this by reviewing the theoretical, historical, geopolitical, and disciplinary context of citizen science terminology; discussing what citizen science is and reviewing related terms; and providing a collection of potential terms and definitions for 'citizen science' and people participating in citizen science projects. This collection of terms was generated primarily from the broad knowledge base and on-the-ground experience of the authors, by recognizing the potential issues associated with various terms. While our examples may not be systematic or exhaustive, they are intended to be suggestive and invitational of future consideration. In our collective experience with citizen science projects, no single term is appropriate for all contexts. In a given citizen science project, we suggest that terms should be chosen carefully and their usage explained; direct communication with participants about how terminology affects them and what they would prefer to be called also should occur. We further recommend that a more systematic study of terminology trends in citizen science be conducted.
Human computation is a computing approach that draws upon human cognitive abilities to solve computational tasks for which there are so far no satisfactory fully automated solutions even when using the most advanced computing technologies available. Human computation for citizen science projects consists in designing systems that allow large crowds of volunteers to contribute to scientific research by executing human computation tasks. Examples of successful projects are Galaxy Zoo and FoldIt. A key feature of this kind of project is its capacity to engage volunteers. An important requirement for the proposal and evaluation of new engagement strategies is having a clear understanding of the typical engagement of the volunteers; however, even though several projects of this kind have already been completed, little is known about this issue. In this paper, we investigate the engagement pattern of the volunteers in their interactions in human computation for citizen science projects, how they differ among themselves in terms of engagement, and how those volunteer engagement features should be taken into account for establishing the engagement encouragement strategies that should be brought into play in a given project. To this end, we define four quantitative engagement metrics to measure different aspects of volunteer engagement, and use data mining algorithms to identify the different volunteer profiles in terms of the engagement metrics. Our study is based on data collected from two projects: Galaxy Zoo and The Milky Way Project. The results show that the volunteers in such projects can be grouped into five distinct engagement profiles that we label as follows: hardworking, spasmodic, persistent, lasting, and moderate. The analysis of these profiles provides a deeper understanding of the nature of volunteers' engagement in human computation for citizen science projects.
Soon after publication the authors were made aware of an error within Table 3 of the original publication. The example given as the 'Scientist' term 'Citizen scientist, Scientist-citizen, public scientist, community scientist' previously read: "Citizen scientists investigated anecdotal evidence to construct hypotheses regarding developmental disorders that members of the public claimed were triggered by a MMR vaccine." This should have read: "Citizen scientists investigated anecdotal evidence to construct hypotheses regarding developmental disorders that members of the public claimed were triggered by chemical pollution." The corrected Table 3 is presented here.
Opportunistic grids are distributed computing infrastructures that harvest the idle computing cycles of computing resources geographically distributed. In these grids, the demand for resources is typically bursty. During bursts of resource demand, many grid resources are required, but on other times they remain idle for long periods. If the resources are kept powered on even when they are neither processing their owners workload nor grid jobs, their exploitation is not efficient in terms of energy consumption. One way to reduce the energy consumed in these idleness periods is to place the computers that form the grid in a "sleeping" mode which consumes less energy. We evaluated two sleeping strategies, denoted: standby and hibernate. Resources that comprise an opportunistic grid are normally very heterogeneous, and differ enormously on their processing power and energy consumption. It opens the possibility of implementing scheduling strategies that take energy-efficiency into account. We consider scheduling in two different levels. Firstly, how to choose which machine should be woken up, if several options are available. Secondly, how to decide which tasks to schedule to the available machines. In summary, our results presented a significant reduction in energy consumption, surpassing 80% in a scenario when the amount of resources in the grid was high. Moreover, this comes with limited impact on the response time of the applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.