Global vegetation models predict the spread of woody vegetation in African savannas and grasslands under future climate scenarios, but they operate too broadly to consider hillslopescale variations in tree -grass distribution. Topographically linked hydrology -soil -vegetation sequences, or catenas, underpin a variety of ecological processes in savannas, including responses to climate change. In this study, we explore the three-dimensional structure of hillslopes and vegetation, using high-resolution airborne LiDAR (Light Detection And Ranging), to understand the long-term effects of mean annual precipitation (MAP) on catena pattern. Our results reveal that the presence and position of hillslope hydrological boundaries, or seeplines, vary as a function of MAP through its long-term infl uence on clay redistribution. We suggest that changes in climate will differentially alter the structure of savannas through hydrological changes to the seasonally saturated grasslands downslope of seeplines. The mechanisms underlying future woody encroachment are not simply physiological responses to elevated temperatures and CO 2 levels but also involve hydrogeomorphological processes at the hillslope scale.
The spacing of hills and valleys refl ects the competition between disturbance-driven (or diffusive) transport on hillslopes and concentrative (or advective) transport in valleys, although the underlying lithologic, tectonic, and climatic controls have not been untangled. Here, we measure geochemical and geomorphic properties of catchments in Kruger National Park, South Africa, where granitic lithology and erosion rates are invariant, enabling us to evaluate how varying mean annual precipitation (MAP = 470 mm, 550 mm, and 730 mm) impacts hill-valley spacing or landscape dissection. Catchment-averaged erosion rates, based on 10 Be concentrations in river sands, are low (3-6 m/m.y.) and vary minimally across the three sites. Our lidar-derived slope-area analyses reveal that hillslopes in the dry site are gentle (3%) and short, such that the terrain is low relief and appears highly dissected. With increasing rainfall, hillslopes lengthen and increase in gradient (6%-8%), resulting in less-dissected, higher-relief catchments. The chemical depletion fraction of hilltop regoliths increases with rainfall, from 0.3 to 0.7, refl ecting a climate-driven increase in chemical relative to physical erosion. Soil catenas also vary systematically with climate as we observe relatively uniform soil properties in the dry site that contrast with leached sandy crests and upper slopes coupled with downslope clay accumulation zones in the intermediate and wet sites. The geomorphic texture of this slow-eroding, granitic landscape appears to be set by climate-driven feedbacks among chemical weathering, regolith fabric differentiation, hydrological routing, and sediment transport that enhance the vigor of hillslope sediment transport relative to valley-forming processes for wetter climates.
The accumulation of sodium on the footslopes of granitic catenas in semi‐arid southern Africa leads to the formation of sodic patches. Sodic patches are ecologically important for nutrient accumulation, predator evasion and wallowing, but they are often perceived as derelict lands because of vegetation denudation and low aesthetic quality. This negative perception, by both ecologists and tourists, often leads to ill‐advised management and ‘rehabilitation’ measures. In Kruger National Park, sodic patches occur at the riparian‐upland boundary and hence the processes originating in both systems may contribute to their origin. The upland‐based catena and riparian‐based evapotranspiration models were used to explore the hypothesis that these soils originate from both catena and evapotranspiration‐driven hydraulic processes. The models predict vegetation zonation dictated by a salt tolerance gradient and an increase in sodic patch area over time as a result of progressive salt accumulation. Vegetation structure and hillslope morphology across the riparian‐upland boundary and analysis of change in patch configuration over a 50‐year aerial photographic record were used to test the hypotheses. Sodic patches have unique vegetation, occur on the intermediate positions of hillslopes, have increased in area three‐fold over 50 years and are encroaching into the riparian zone. This behaviour is consistent with the assertion that these patches originate from both catena and evapotranspiration processes. Results imply a dynamic aspect of sodic patches, which have been previously viewed as static landscape features in pedogenic time scales. However, we show that they change over relatively smaller time scales meaning that their management should be commensurate with this dynamic nature. Therefore, sodic patches should be managed under a scheme that incorporates their small‐scale expansion and recognizes their ecological importance.
Abstract. Organic matter-mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon ( 14 C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14 C on the same fraction.Density separation demonstrated that mineral associated C accounted for 40-70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9-47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time.Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 cl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.