Transection of dorsal columns of the spinal cord in adult monkeys results in large-scale expansion of the face inputs into the deafferented hand region in the primary somatosensory cortex (area 3b) and the ventroposterior nucleus of thalamus. Here, we determined whether the upstream cortical areas, secondary somatosensory (S2) and parietal ventral (PV) areas, also undergo reorganization after lesions of the dorsal columns. Areas S2, PV, and 3b were mapped after long-term unilateral lesions of the dorsal columns at cervical levels in adult macaque monkeys. In areas S2 and PV, we found neurons responding to touch on the face in regions in which responses to touch on the hand and other body parts are normally seen. In the reorganized parts of S2 and PV, inputs from the chin as well as other parts of the face were observed, whereas in area 3b only the chin inputs expand into the deafferented regions. The results show that deafferentations lead to a more widespread brain reorganization than previously known. The data also show that reorganization in areas S2 and PV shares a common substrate with area 3b, but there are specific features that emerge in S2 and PV.
Long-term injuries to the dorsal columns of the spinal cord at cervical levels result in large-scale somatotopic reorganization of the somatosensory areas of the cortex and the ventroposterior nucleus of the thalamus. As a result of this reorganization, intact inputs from the face expand into the deafferented hand representations. Dorsal column injuries also result in permanent deficits in the use of digits for precision grip and a loss of fractionated movements of the digits. We determined whether the chronic loss of sensory inputs and the behavioral deficits caused by lesions of the dorsal columns in adult macaque monkeys affect organization of the motor cortex. The results show that, in the primary motor cortex, intracortical microstimulation evokes extension-flexion movements of the thumb at significantly fewer sites compared with the normal monkeys. There is a corresponding increase in the adduction-abduction movements. Furthermore, there is a significant increase in the thresholds of the currents required to evoke movements of the digits. Thus, long-term sensory loss in adult monkeys does not change the overall topography of the movement representation in the motor cortex but results in changes in the details of movement representations.
Design cognition is a human cognitive ability that is characterized by multi-faceted skills and competencies. This skill requires finding solutions for a vague problem, where the end point is not specified and the transformations from the problem state to the solution state are also flexible. Designers solve such tasks regularly, but the mental processes involved in such a skill are not known completely. Design research has involved empirical studies and theoretical modeling to understand the cognitive processes underlying this skill. In lab-based studies, a sub-class of problem-solving tasks called “ill-structured” tasks has been used to study the design process. However, the use of a cognitive neuroscience perspective has only been nascent. In this review, some defining features of design creativity will be elucidated and a few cognitive neuroscience studies of design creativity that shows the underlying brain networks will be highlighted. Results from these experiments using ill-structured tasks along with functional magnetic resonance imaging (fMRI) show that the brain networks underlying design creativity only partially overlap with brain networks underlying other kinds of creativity. This argues for studying design creativity as a unique subset of creativity using experiments that mimic the real-world design creative processes.
The evolution of opposable thumb has enabled fine grasping ability and precision grip, therefore the ability to finely manipulate the objects and refined tool use. Since tactile inputs to an opposable thumb are often spatially and temporally out of sync with inputs from the fingers, we hypothesized that inputs from the opposable thumb would be processed in an independent module in the primary somatosensory cortex (area 3b). Here we show that in area 3b of macaque monkeys, most neurons in the thumb representation do not respond to tactile stimulation of other digits and receive few intrinsic cortical inputs from other digits. However, neurons in the representations of other 4 digits respond to touch on any of the 4 digits and interconnect significantly more. The thumb inputs are thus processed in an independent module, whereas there is a significantly more interdigital information exchange between the other digits. This cortical organization reflects behavioral use of a hand with an opposable thumb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.