We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable version by adding a dynamical equation for the passive advection of temperature in the ocean, together with an energy balance model.The bifurcation analysis and the numerical integration of the model reveal the presence of low-frequency variability (LFV) concentrated on and near a longperiodic, attracting orbit. This orbit combines atmospheric and oceanic modes, and it arises for large values of the meridional gradient of radiative input and of frictional coupling. Chaotic behavior develops around this orbit as it loses its stability; this behavior is still dominated by the LFV on decadal and multidecadal time scales that is typical of oceanic processes. Atmospheric diagnostics also reveals the presence of predominant low-and high-pressure zones, as well as of a subtropical jet; these features recall realistic climatological properties of the oceanic atmosphere.Finally, a predictability analysis is performed. Once the decadal-scale periodic orbits develop, the coupled system's short-term instabilities -as measured by its Lyapunov exponents -are drastically reduced, indicating the ocean's stabilizing role on the atmospheric dynamics. On decadal time scales, the recurrence of the solution in a certain region of the invariant subspace associated with slow modes displays some extended predictability, as reflected by the oscillatory behavior of the error for the atmospheric variables at long lead times.
The European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP)-Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11 • EUR-11 and 0.44 • EUR-44 domains). Additionally, the inclusion of empiricalstatistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
CapsuleState-of-the-Art statistical postprocessing techniques for ensemble forecasts are reviewed, together with the challenges posed by a demand for timely, high-resolution and reliable probabilistic information. Possible research avenues are also discussed.
Abstract. This paper describes a reduced-order quasi-geostrophic coupled ocean–atmosphere model that allows for an arbitrary number of atmospheric and oceanic modes to be retained in the spectral decomposition. The modularity of this new model allows one to easily modify the model physics. Using this new model, coined the "Modular Arbitrary-Order Ocean-Atmosphere Model" (MAOOAM), we analyse the dependence of the model dynamics on the truncation level of the spectral expansion, and unveil spurious behaviour that may exist at low resolution by a comparison with the higher-resolution configurations. In particular, we assess the robustness of the coupled low-frequency variability when the number of modes is increased. An "optimal" configuration is proposed for which the ocean resolution is sufficiently high, while the total number of modes is small enough to allow for a tractable and extensive analysis of the dynamics.
A Bayesian analysis of the world's p(γ, K + )Λ data is presented. From the proposed selection of 11 resonances, we find that the following nucleon resonances have the highest probability of contributing to the reaction: S11(1535), S11(1650), F15(1680), P13(1720), D13(1900), P13(1900), P11(1900), and F15(2000). We adopt a Regge-plus-resonance framework featuring consistent couplings for nucleon resonances up to spin J = 5/2. We evaluate all possible combinations of 11 candidate resonances. The best model is selected from the 2048 model variants by calculating the Bayesian evidence values against the world's p(γ, K + )Λ data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.