Summary1. The quantitative relationship between size and reproductive output is a central aspect of a plant's strategy: the conversion of growth into fitness. As plant allocation is allometric in the broad sense, i.e. it changes with size, we take an allometric perspective and review existing data on the relationship between individual vegetative (V, x-axis) and reproductive (R, y-axis) biomass within plant populations, rather than analysing biomass ratios such as reproductive effort (R ⁄ (R+V)). 2. The allometric relationship between R and V among individuals within a population is most informative when cumulative at senescence (total R-V relationship), as this represents the potential reproductive output of individuals given their biomass. Earlier measurements may be misleading if plants are at different developmental stages and therefore have not achieved the full reproductive output their size permits. Much of the data that have been considered evidence for plasticity in reproductive allometry are actually evidence for plasticity in the rate of growth and development. 3. Although a positive x-intercept implies a minimum size for reproducing, a plant can have a threshold size for reproducing without having a positive x-intercept. 4. Most of the available data are for annual and monocarpic species whereas allometric data on long-lived iteroparous plants are scarce. We find three common total R-V patterns: short-lived, herbaceous plants and clonal plants usually show a simple, linear relationship, either (i) passing through the origin or (ii) with a positive x-intercept, whereas larger and longer-lived plants often exhibit (iii) classical log-log allometric relationships with slope <1. While the determinants of plant size are numerous and interact with one another, the potential reproductive output of an individual is primarily determined by its size and allometric programme, although this potential is not always achieved. 5. Synthesis. The total R-V relationship for a genotype appears to be a relatively fixed-boundary condition. Below this boundary, a plant can increase its reproductive output by: (i) moving towards the boundary: allocating more of its resources to reproduction, or (ii) growing more to increase its potential reproductive output. At the boundary, the plant cannot increase its reproductive output without growing more first. Analysing size-dependent reproduction is the first step in understanding plant reproductive allocation, but more integrative models must include time and environmental cues, i.e. development.
Crop-wild hybridization may produce offspring with lower fitness than their wild parents due to deleterious crop traits and outbreeding depression. Over time, however, selection for improved fitness could lead to greater invasiveness of hybrid taxa. To examine evolutionary change in crop-wild hybrids, we established four wild (Raphanus raphanistrum) and four hybrid radish populations (R. raphanistrum x Raphanus sativus) in Michigan (MI), USA. Hybrid and wild populations had similar growth rates over four generations, and pollen fertility of hybrids improved. We then measured hybrid and wild fitness components in two common garden sites within the geographical range of wild radish [MI and California (CA)]. Advanced generation hybrids had slightly lower lifetime fecundity than wild plants in MI but exhibited c. 270% greater lifetime fecundity and c. 22% greater survival than wild plants in CA. Our results support the hypothesis that crop-wild hybridization may create genotypes with the potential to displace parental taxa in new environments.
Here we present the first empirical evidence to support the hypothesis that a gender-heterogeneous problem-solving team generally produced journal articles perceived to be higher quality by peers than a team comprised of highly-performing individuals of the same gender. Although women were historically underrepresented as principal investigators of working groups, their frequency as PIs at the National Center for Ecological Analysis and Synthesis is now comparable to the national frequencies in biology and they are now equally qualified, in terms of their impact on the accumulation of ecological knowledge (as measured by the h-index). While women continue to be underrepresented as working group participants, peer-reviewed publications with gender-heterogeneous authorship teams received 34% more citations than publications produced by gender-uniform authorship teams. This suggests that peers citing these publications perceive publications that also happen to have gender-heterogeneous authorship teams as higher quality than publications with gender uniform authorship teams. Promoting diversity not only promotes representation and fairness but may lead to higher quality science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.