B-cell non-Hodgkin’s lymphoma (B-NHL) encompasses multiple clinically and phenotypically distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL such as diffuse large B-cell lymphoma (DLBCL) have been comprehensively interrogated at the genomic level. But rarer subtypes such as mantle cell lymphoma (MCL) remain sparsely characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively compared using the same methodology to identify conserved or subtype-specific patterns of genomic alterations. Here, we employed a large targeted hybrid-capture sequencing approach encompassing 380 genes to interrogate the genomic landscapes of 685 B-NHL tumors at high depth; including DLBCL, MCL, follicular lymphoma (FL), and Burkitt lymphoma (BL). We identified conserved hallmarks of B-NHL that were deregulated in the majority of tumor from each subtype, including the frequent genetic deregulation of the ubiquitin proteasome system (UPS). In addition, we identified subtype-specific patterns of genetic alterations, including clusters of co-occurring mutations and DNA copy number alterations. The cumulative burden of mutations within a single cluster were more discriminatory of B-NHL subtypes than individual mutations, implicating likely patterns of genetic cooperation that contribute to disease etiology. We therefore provide the first cross-sectional analysis of mutations and DNA copy number alterations across major B-NHL subtypes and a framework of co-occurring genetic alterations that deregulate genetic hallmarks and likely cooperate in lymphomagenesis.
This study provides convincing evidence that CD10 expression is related to a distinct GC signature in MCL cases, but without clinical or biological implications.
B-cell non-Hodgkin lymphoma (B-NHL) encompasses multiple clinically and phenotypically distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL such as diffuse large B-cell lymphoma (DLBCL) have been comprehensively interrogated at the genomic level, but other less common subtypes such as mantle cell lymphoma (MCL) remain sparsely characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively compared to identify conserved or subtype-specific patterns of genomic alterations. Here, we employed a large targeted hybrid-capture sequencing approach encompassing 380 genes to interrogate the genomic landscapes of 755 B-NHL tumors at high depth; primarily including DLBCL, MCL, follicular lymphoma (FL), and Burkitt lymphoma (BL). We identified conserved hallmarks of B-NHL that were deregulated across major subtypes, such as the frequent genetic deregulation of the ubiquitin proteasome system (UPS). In addition, we identified subtype-specific patterns of genetic alterations, including clusters of co-occurring mutations that are pathognomonic. The cumulative burden of mutations within a single cluster were more significantly discriminatory of B-NHL subtypes than individual mutations, implicating likely patterns of genetic epistasis that contribute to disease etiology. We therefore provide a framework of co-occurring mutations that deregulate genetic hallmarks and likely cooperate in lymphomagenesis of B-NHL subtypes.KEY POINTSGenetic perturbation of the ubiquitin proteasome system is an emerging hallmark of B-cell non-Hodgkin lymphoma (B-NHL).Co-occurring sets of genetic alterations define B-NHL subtypes and likely represent epistatic interactions.
Mantle cell lymphoma (MCL) is an aggressive disease with frequent relapse. Targeted therapies against B-cell receptor (BCR) molecules have demonstrated improved outcomes in relapsed cases. However, clinical responses are slow and selective, with failure to attain complete remission in a significant subset of patients. Complex interaction of BCR signal transduction with toll-like receptor (TLR) and other pathways in MCL remains unknown, thus averting progress in development of targeted therapies. We have performed detailed digital quantification of BCR/TLR signalling molecules and their effector pathways in a cohort (n = 81) of MCL patients and correlated these data with overall survival. Hierarchical clustering model based on BCR/TLR genes revealed two distinct (BCR high and BCR low ) subsets of patients (n = 32; 40%) with significant differences in expression (>1.5-fold change; p < 0.05). Higher levels of BTK/SYK/BLNK/CARD11/PLCG signalosome and lower expression of MALT1/BCL10 genes suggested tonic pattern of BCR activation. Amplified expression of TLR6/TLR7/TLR9 was noted in concert with hyper-responsiveness of BCR machinery. MYD88, a key TLR adaptor molecule, was not upregulated in any of these clusters, which may suggest a 'cross-talk' between BCR and TLR pathways. In sync with BCR/TLR signalling, we recorded significantly enhanced expression of genes associated with NF-kB pathway in BCR high subset of MCL patients. On univariate analysis, the BCR high patients showed a trend towards inferior clinical response to a standardized treatment protocol, compared with the BCR low group (log rank, p = 0.043). In conclusion, we have identified hyperactive BCR/TLR signalling pathways and their effector downstream targets in a subset of MCL patients and associated it with poor clinical outcomes. Our study provides quantitative evidence at RNA expression level of possible concomitant collaboration between TLR and BCR signalling molecules in MCL. These data will provide further insights for future functional studies and, hence, development of targeted therapies for MCL patients.
Acute myeloid leukaemia (AML) is a clinically aggressive disease with marked genetic heterogeneity. Cytogenetic abnormalities provide the basis for risk stratification into clinically favourable, intermediate, and unfavourable groups. There are additional genetic mutations, which further influence the prognosis of patients with AML. Most of these result in molecular aberrations whose downstream target is MYC. It is therefore logical to study the relationship between MYC protein expression and cytogenetic risk groups. We studied MYC expression by immunohistochemistry in a large cohort (n = 199) of AML patients and correlated these results with cytogenetic risk profile and overall survival (OS). We illustrated differential expression of MYC protein across various cytogenetic risk groups (p = 0.03). Highest expression of MYC was noted in AML patients with favourable cytogenetic risk group. In univariate analysis, MYC expression showed significant negative influence of OS in favourable and intermediate cytogenetic risk group (p = 0.001). Interestingly, MYC expression had a protective effect in the unfavourable cytogenetic risk group. In multivariate analysis, while age and cytogenetic risk group were significant factors influencing survival, MYC expression by immunohistochemistry methods also showed some marginal impact (p = 0.069). In conclusion, we have identified differential expression of MYC protein in relation to cytogenetic risk groups in AML patients and documented its possible impact on OS in favourable and intermediate cytogenetic risk groups. These preliminary observations mandate additional studies to further investigate the routine clinical use of MYC protein expression in AML risk stratification. Copyright © 2016 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.