Ricin is a plant toxin with high bioterrorism potential due to its natural abundance and potency in inducing cell death. Early detection of the active toxin is essential for developing appropriate countermeasures. Here we review concepts for designing ricin detection methods, including mechanism of action of the toxin, advantages and disadvantages of current detection assays, and perspectives on the future development of rapid and reliable methods for detecting ricin in environmental samples.
Rac1 GTPase regulates a variety of signaling pathways that are implicated in malignant phenotypes. Here, we show that selective inhibition of Rac1 activity by the pharmacologic inhibitor NSC23766 suppressed cell growth in a panel of human breast cancer cell lines, whereas it had little toxicity to normal mammary epithelial cells. NSC23766 elicits its cytotoxicity via two distinct mechanisms in a cell line-dependent manner: induction of G 1 cell cycle arrest in cell lines (MDA-MB-231, MCF7, and T47D) that express retinoblastoma (Rb) protein or apoptosis in Rb-deficient MDA-MB-468 cells. In MDA-MB-231 cells, Rac1 inhibition induced G 1 cell cycle arrest through downregulation of cyclin D1 and subsequent dephosphorylation/inactivation of Rb. By contrast, MDA-MB-468 cells underwent substantial apoptosis that was associated with loss of antiapoptotic proteins survivin and X-linked inhibitor of apoptosis protein (XIAP). Rac1 knockdown by RNAi interference confirmed the specificity of NSC23766 and requirement for Rac1 in the regulation of cyclin D1, survivin, and XIAP in breast cancer cells. Further, NF-κB, but not c-Jun NH 2 -terminal kinase or p38 pathways, mediates the survival signal from Rac1. Overall, our results indicate that Rac1 plays a central role in breast cancer cell survival through regulation of NF-κB-dependent gene products. Mol Cancer Ther; 9(6); 1657-68. ©2010 AACR.
ABSTRACT:TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through death receptors (DRs) 4 and/or 5 expressed on the surface of target cells. We have previously shown that deficiency of DR4 and DR5 on the surface membrane is a critical mechanism of cancer cell resistance to the recombinant human TRAIL and its receptor agonistic antibodies, which are being evaluated clinically for treating cancers. In certain cancer cells, DR4 and DR5 were found to be mislocalized in intracellular compartments yet to be characterized. Here, we report a novel role of autophagy in the regulation of dynamics of TRAIL death receptors. We first assessed basal levels of autophagosomes in a panel of 11 breast cancer cell lines using complementary approaches (LC3 immunoblotting, RFP-LC3 fluorescence microscopy, and electron microscopy). We found high levels of basal autophagosomes in TRAIL resistant breast cancer cell lines (e.g. BT474 and AU565) and relevant mouse xenograft models under nutrition-rich conditions. Notably, DR4 and DR5 co-localized with LC3-II in the autophagosomes of TRAIL-resistant cells. Disruption of basal autophagosomes successfully restored the surface expression of the death receptors which was accompanied by sensitization of TRAIL-resistant cells to TRAIL induced apoptosis. By contrast, TRAIL-sensitive cell lines (MDA-MB-231) are characterized by high levels of surface DR4/DR5 and an absence of basal autophagosomes. Inhibition of lysosomal activity induced an accumulation of autophagosomes and a decrease in surface DR4 and DR5, and the cells became less sensitive to TRAIL-induced apoptosis. These findings demonstrate a novel role for the basal autophagosomes in the regulation of TRAIL death receptors. Further studies are warranted to explore the possibility of using autophagosome markers such as LC3-II/LC3-I ratios for prediction of tumor resistance to TRAIL related therapies. The results also provide a rationale for future non-clinical and clinical studies testing TRAIL agonists in combination with agents that directly inhibit autophagosome assembly.
The Rho GDP dissociation inhibitor D4-GDI is overexpressed in some human breast cancer cell lines (Zhang, Y., and Zhang, B. (2006) Cancer Res. 66, 5592-5598). Here, we show that silencing of D4-GDI by RNA interference abrogates tumor growth and lung metastasis of otherwise highly invasive MDA-MB-231 breast cancer cells. Under anchorage-independent culture conditions, D4-GDI-depleted cells undergo rapid apoptosis (anoikis), which is known to hinder metastasis. We also found that D4-GDI associates with Rac1 and Rac3 in breast cancer cells, but not with other Rho GTPases tested (Cdc42, RhoA, RhoC, and TC10). Silencing of D4-GDI results in constitutive Rac1 activation and translocation from the cytosol to cellular membrane compartments and in sustained activation of p38 and JNK kinases. Rac1 blockade inhibits p38/JNK kinase activities and the spontaneous anoikis of D4-GDI knockdown cells. These results suggest that D4-GDI regulates cell function by interacting primarily with Rac GTPases and may play an integral role in breast cancer tumorigenesis. D4-GDI could prove to be a potential new target for therapeutic intervention.Human breast cancer is a heterogeneous disease with diverse metastatic behavior and treatment responses (1). Attempts to classify this disease into clinically relevant subtypes have yielded multiple sets of gene expression signatures of noninvasive and invasive breast cancers (2-6). However, only a few genes overlap among the results from different laboratories, and most of the genes are not yet characterized as functional mediators of breast cancer progression. The molecular basis of breast tumorigenesis remains to be fully understood.Rho GTPases, including Rac1, Rac3, Cdc42, and RhoA, are pivotal regulators of cell morphology, gene expression, cell proliferation, and apoptosis (7). The aberrant signaling through these molecules has been implicated in many aspects of tumorigenesis, including uncontrolled cell growth and metastatic phenotypes (8 -12). In particular, Rac1 and its isoforms are key regulators of malignant transformation and invasive behavior of cancer cells (13)(14)(15)(16)(17). This is achieved at least partially by their ability to control cell growth under anchorage-independent conditions and resistance to anoikis, apoptosis induced by loss of adhesion (18 -20).As molecular switches, Rac/Rho GTPases cycle between inactive GDP-bound and active GTP-bound states (21). Their biological activity is tightly controlled by the Rho-GDP dissociation inhibitors (RhoGDIs), 2 including RhoGDI (RhoGDI-1 or RhoGDI-␣), D4-GDI (RhoGDI-2 or RhoGDI-), and RhoGDI-3 (RhoGDI-␥). These proteins are thought to form stable complexes with individual Rho GTPases, thus keeping them in the cytosol. Upon growth factor stimulation, the GTPases are directed to effector sites, such as the plasma membrane, for activation (21-23). Thus, the expression levels of RhoGDIs relative to Rho GTPases must be precisely controlled to achieve normal cell function. RhoGDI binds most Rho GTPases in most types of cells (22). Ho...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.