DNA hypomethylation is a feature of epidermal cells from aged and sun-exposed skin, but the mechanisms responsible for this methylation loss are not known. Dnmt3a is the dominant de novo DNA methyltransferase in the skin; while epidermal Dnmt3a deficiency creates a premalignant state in which keratinocytes are more easily transformed by topical mutagens, the conditions responsible for this increased susceptibility to transformation are not well understood. Using whole genome bisulfite sequencing, we identified a focal, canonical DNA hypomethylation phenotype in the epidermal cells of Dnmt3a-deficient mice. Single-cell transcriptomic analysis revealed an increased proportion of cells with a proliferative gene expression signature, while other populations in the skin were relatively unchanged. Although total DNMT3A deficiency has not been described in human disease states, rare patients with an overgrowth syndrome associated with behavioral abnormalities and an increased risk of cancer often have heterozygous, germline mutations in DNMT3A that reduce its function (Tatton-Brown Rahman syndrome [TBRS]). We evaluated the DNA methylation phenotype of the skin from a TBRS patient with a germline DNMT3AR882H mutation, which encodes a dominant-negative protein that reduces its methyltransferase function by ∼80%. We detected a focal, canonical hypomethylation phenotype that revealed considerable overlap with hypomethylated regions found in Dnmt3a-deficient mouse skin. Together, these data suggest that DNMT3A loss creates a premalignant epigenetic state associated with a hyperproliferative phenotype in the skin and further suggest that DNMT3A acts as a tumor suppressor in the skin.
Alterations in epigenetic regulators are increasingly recognized as early events in tumorigenesis; thus, patients with acquired or inherited variants in epigenetic regulators may be at increased risk for developing multiple types of cancer. DNMT3A overgrowth syndrome (DOS), caused by germline pathogenic variants in the DNA methyltransferase geneDNMT3A, has been associated with a predisposition toward development of hematopoietic and neuronal malignancies. DNMT3A deficiency has been described to promote keratinocyte proliferation in mice. Although altered DNA methylation patterns are well-recognized in melanoma, the role of DNA methyltransferases in melanoma pathogenesis is not clear. We report the case of an adult DOS patient with a germlineDNMT3Aloss-of-function mutation, who developed an early-onset melanoma with regional lymph node metastatic disease. Exome sequencing of the primary tumor identified an additional acquired, missenseDNMT3Amutation in the dominant tumor clone, suggesting that the loss of DNMT3A function was relevant for the development of this tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.