Background The practice of agriculture in urban settings contributes to the rapid expansion of insecticide resistance in malaria vectors. However, there is still not enough information on pesticide usage in most urban settings. The present study aims to assess the evolution of Anopheles gambiae (s.l.) population susceptibility to insecticides and patterns of pesticide usage in agriculture in the city of Yaoundé, Cameroon. Methods WHO susceptibility tests and synergist PBO bioassays were conducted on adult An. gambiae (s.l.) mosquitoes aged 3 to 5 days emerging from larvae collected from the field. Seven insecticides (deltamethrin, permethrin, DDT, bendiocarb, propoxur, fenitrothion and malathion) were evaluated. The presence of target site mutation conferring knockdown (kdr) resistance was investigated using TaqMan assay, and mosquito species were identified using SINE-PCR. Surveys on 81 retailers and 232 farmers were conducted to assess general knowledge and practices regarding agricultural pesticide usage. Results High resistance intensity to pyrethroids was observed with a high frequency of the kdr allele 1014F and low frequency of the kdr 1014S allele. The level of susceptibility of An. gambiae (s.l.) to pyrethroids and carbamates was found to decrease with time (from > 34% in 2017 to < 23% in 2019 for deltamethrin and permethrin and from 97% in 2017 to < 86% in 2019 for bendiocarb). Both An. gambiae (s.s.) and An. coluzzii were recorded. Over 150 pesticides and fertilizers were sold by retailers for agricultural purposes in the city of Yaoundé. Most farmers do not respect safety practices. Poor practices including extensive and inappropriate application of pesticides as well as poor management of perished pesticides and empty pesticide containers were also documented. Conclusions The study indicated rapid evolution of insecticide resistance and uncontrolled usage of pesticides by farmers in agriculture. There is an urgent need to address these gaps to improve the management of insecticide resistance. Graphical Abstract
In Cameroon, pyrethroid-only long-lasting insecticidal nets (LLINs) are still largely used for malaria control. The present study assessed the efficacy of such LLINs against a multiple-resistant population of the major malaria vector, Anopheles coluzzii, in the city of Yaoundé via a cone bioassay and release-recapture experimental hut trial. Susceptibility of field mosquitoes in Yaoundé to pyrethroids, DDT, carbamates and organophosphate insecticides was investigated using World Health Organization (WHO) bioassay tube tests. Mechanisms of insecticide resistance were characterised molecularly. Efficacy of unwashed PermaNet® 2.0 was evaluated against untreated control nets using a resistant colonised strain of An. coluzzii. Mortality, exophily and blood feeding inhibition were estimated. Field collected An. coluzzii displayed high resistance with mortality rates of 3.5% for propoxur (0.1%), 4.16% for DDT (4%), 26.9% for permethrin (0.75%), 50.8% for deltamethrin (0.05%), and 80% for bendiocarb (0.1%). High frequency of the 1014F west-Africa kdr allele was recorded in addition to the overexpression of several detoxification genes, such as Cyp6P3, Cyp6M2, Cyp9K1, Cyp6P4 Cyp6Z1 and GSTe2. A low mortality rate (23.2%) and high blood feeding inhibition rate (65%) were observed when resistant An. coluzzii were exposed to unwashed PermaNet® 2.0 net compared to control untreated net (p < 0.001). Furthermore, low personal protection (52.4%) was observed with the resistant strain, indicating reduction of efficacy. The study highlights the loss of efficacy of pyrethroid-only nets against mosquitoes exhibiting high insecticide resistance and suggests a switch to new generation bed nets to improve control of malaria vector populations in Yaoundé.
Background Urban malaria is becoming a major public health concern in major cities in Cameroon. To improve malaria vector control, a pilot larviciding trial was conducted to assess its impact on mosquito density and malaria transmission intensity in Yaoundé. The present study investigated perceptions and practices of communities on malaria control during the larviciding trial implemented in Yaoundé. Methods Quantitative and qualitative data were collected in non-intervention and intervention areas. Quantitative data were collected during three cross-sectional surveys using a structured pre-tested questionnaire while qualitative data were obtained through interviews. A total of 26 in-depth interviews and eight focus group discussions with community members were performed. A binary logistic regression model was used to assess the perception of the community on larviciding impact on some malaria or bed nets use indicators. Results People living in intervention areas were 2.64 times more likely to know the mode of malaria transmission (95% CI: 1.82–3.84; p<0.001) and 1.3 time more likely to know mosquito breeding habitats (95% CI: 1.06–1.56; p = 0.009) compared to those living in non-intervention areas. In intervention areas, interviewee opinions on larviciding were generally good i.e. most interviewees reported having noticed a reduction in mosquito nuisance and malaria cases following larviciding implementation; whereas in non-intervention areas no report of reduction of mosquito nuisance was recorded. LLINs were regularly used by the population despite the implementation of larviciding treatments. There was high interest in larviciding program and demand for continuation, even if this needs the community involvement. Conclusion The larviciding program in the city of Yaoundé did not negatively affected community members’ behaviour and practices concerning the use of treated nets. The study indicated the acceptance of larviciding program by the population. This positive environment could favour the implementation of future antilarval control activities in the city of Yaoundé.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.