Solid-state (1)H, (17)O MAS NMR, (1)H-(93)Nb TRAPDOR NMR, and (1)H double quantum 2D MAS NMR experiments were used to characterize the oxygen, water, and hydroxyl environments in the monoprotonated hexaniobate material, Na(7)[HNb(6)O(19)].15H(2)O. These solid-state NMR experiments demonstrate that the proton is located on the bridging oxygen of the [Nb(6)O(19)](8-) cluster. The solid-state NMR results also show that the NbOH protons are spatially isolated from similar protons, but undergo proton exchange with the water species located in the crystal lattice. On the basis of double quantum (1)H MAS NMR measurements, it was determined that the water species in the crystal lattice have restricted motional dynamics. Two-dimensional (1)H-(17)O MAS NMR correlation experiments show that these restricted waters are preferentially associated with the bridging oxygen. Solution (17)O NMR experiments show that the hydroxyl proton is also attached to the bridging oxygen for the compound in solution. In addition, solution (17)O NMR kinetic studies for the hexaniobate allowed the measurement of relative oxygen exchange rates between the bridging, terminal, and hydroxyl oxygen and the oxygen of the solvent as a function of pH and temperature. These NMR experiments are some of the first investigations into the proton location, oxygen and proton exchange processes, and water dynamics for a base stable polyoxoniobate material, and they provide insight into the chemistry and reactivity of these materials.
Monodisperse nanospheres are formed by coordination polymerization tetrakis(4-pyridyl)porphyrin-metal complexes with chloroplatinic acid in aqueous solution. The porphyrin nanospheres and their platinized nanocomposites have potential applications in catalysis and solar energy conversion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.