A massive amount of data is generated with the evolution of modern technologies. This high-throughput data generation results in Big Data, which consist of many features (attributes). However, irrelevant features may degrade the classification performance of machine learning (ML) algorithms. Feature selection (FS) is a technique used to select a subset of relevant features that represent the dataset. Evolutionary algorithms (EAs) are widely used search strategies in this domain. A variant of EAs, called cooperative co-evolution (CC), which uses a divide-and-conquer approach, is a good choice for optimization problems. The existing solutions have poor performance because of some limitations, such as not considering feature interactions, dealing with only an even number of features, and decomposing the dataset statically. In this paper, a novel random feature grouping (RFG) has been introduced with its three variants to dynamically decompose Big Data datasets and to ensure the probability of grouping interacting features into the same subcomponent. RFG can be used in CC-based FS processes, hence called Cooperative Co-Evolutionary-Based Feature Selection with Random Feature Grouping (CCFSRFG). Experiment analysis was performed using six widely used ML classifiers on seven different datasets from the UCI ML repository and Princeton University Genomics repository with and without FS. The experimental results indicate that in most cases [i.e., with naïve Bayes (NB), support vector machine (SVM), k-Nearest Neighbor (k-NN), J48, and random forest (RF)] the proposed CCFSRFG-1 outperforms an existing solution (a CC-based FS, called CCEAFS) and CCFSRFG-2, and also when using all features in terms of accuracy, sensitivity, and specificity.
The rapid progress of modern technologies generates a massive amount of high-throughput data, called Big Data, which provides opportunities to find new insights using machine learning (ML) algorithms. Big Data consist of many features (also called attributes); however, not all these are necessary or relevant, and they may degrade the performance of ML algorithms. Feature selection (FS) is an essential preprocessing step to reduce the dimensionality of a dataset. Evolutionary algorithms (EAs) are widely used search algorithms for FS. Using classification accuracy as the objective function for FS, EAs, such as the cooperative co-evolutionary algorithm (CCEA), achieve higher accuracy, even with a higher number of features. Feature selection has two purposes: reducing the number of features to decrease computations and improving classification accuracy, which are contradictory but can be achieved using a single objective function. For this very purpose, this paper proposes a penalty-based wrapper objective function. This function can be used to evaluate the FS process using CCEA, hence called Cooperative Co-Evolutionary Algorithm-Based Feature Selection (CCEAFS). An experiment was performed using six widely used classifiers on six different datasets from the UCI ML repository with FS and without FS. The experimental results indicate that the proposed objective function is efficient at reducing the number of features in the final feature subset without significantly reducing classification accuracy. Based on different performance measures, in most cases, naïve Bayes outperforms other classifiers when using CCEAFS.
Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for capturing semantics of structured data. However, the standard used for representing these triples, RDF, inherently lacks the mechanism to attach provenance data, which would be crucial to make automatically generated and/or processed data authoritative. This paper is a critical review of data models, annotation frameworks, knowledge organization systems, serialization syntaxes, and algebras that enable provenance-aware RDF statements. The various approaches are assessed in terms of standard compliance, formal semantics, tuple type, vocabulary term usage, blank nodes, provenance granularity, and scalability. This can be used to advance existing solutions and help implementers to select the most suitable approach (or a combination of approaches) for their applications. Moreover, the analysis of the mechanisms and their limitations highlighted in this paper can serve as the basis for novel approaches in RDF-powered applications with increasing provenance needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.