The effect of feature size, geometry, and roughness on the settlement of zoospores of the ship fouling alga Ulva was evaluated using engineered microtopographies in polydimethylsiloxane elastomer. The topographies studied were designed at a feature spacing of 2 microm and all significantly reduced spore settlement compared to a smooth surface. An indirect correlation between spore settlement and a newly described engineered roughness index (ERI) was identified. ERI is a dimensionless ratio based on Wenzel's roughness factor, depressed surface fraction, and the degree of freedom of spore movement. Uniform surfaces of either 2 mum diameter circular pillars (ERI=5.0) or 2 microm wide ridges (ERI=6.1) reduced settlement by 36% and 31%, respectively. A novel multi-feature topography consisting of 2 mum diameter circular pillars and 10 microm equilateral triangles (ERI=8.7) reduced spore settlement by 58%. The largest reduction in spore settlement, 77%, was obtained with the Sharklet AF topography (ERI=9.5).
Bioadhesion and surface wettability are influenced by microscale topography. In the present study, engineered pillars, ridges and biomimetic topography inspired by the skin of fast moving sharks (Sharklet AF) were replicated in polydimethylsiloxane elastomer. Sessile drop contact angle changes on the surfaces correlated well (R2 = 0.89) with Wenzel and Cassie and Baxter's relationships for wettability. Two separate biological responses, i.e. settlement of Ulva linza zoospores and alignment of porcine cardiovascular endothelial cells, were inversely proportional to the width (between 5 and 20 microm) of the engineered channels. Zoospore settlement was reduced by approximately 85% on the finer (ca 2 microm) and more complex Sharklet AF topographies. The response of both cell types suggests their responses are governed by the same underlying thermodynamic principles as wettability.
The energetics of a polydimethylsiloxane (PDMS) elastomer biointerface were micro-engineered through topographical and chemical modification to elicit controlled cellular responses. The PDMS elastomer surfaces were engineered with micrometer scale pillars and ridges on the surface and variable mechanical properties intended to effect directed cell behavior. The topographical features were created by casting the elastomer against epoxy replicas of micropatterned silicon wafers. Using UV photolithography and a reactive ion etching process, highly controlled and repeatable surface microtextures were produced on these wafers. AFM, SEM and white light interference profilometry (WLIP) confirmed the 197 high fidelity of the pattern transfer process from wafer to elastomer. Ridges and pillars 5 μm wide and 1.5 μm or 5 μm tall separated by valleys at 5 μm, 10 μm, or 20 μm widths were examined. Mechanical properties were modulated by addition of linear and branched nonfunctional trimethylsiloxy terminated silicone oils.The modulus of the siloxane elastomer decreased from 1.43 MPa for the unmodified formulation to as low as 0.81 MPa with additives. The oils had no significant effect on the surface energy of the siloxane elastomer as measured by goniometry. Two main biological systems were studied: spores of the green alga Enteromorpha and porcine vascular endothelial cells (PVECs). The density of Enteromorpha spores that settled increased as the valley width decreased. The surface properties of the elastomer were altered by Argon plasma, radio frequency glow discharge (RFGD) treatment, to increase the hydrophilicity for PVEC culture. The endothelial cells formed a confluent layer on the RFGD treated smooth siloxane surface that was interrupted when micro-topography was introduced.
A main limitation of biomedical devices is the inability to start, stop, and control cell growth making it crucial to develop biomaterial surfaces that induce a desired cellular response. Micropatterns of ridges and pillars were created in a siloxane elastomer (Dow Corning) by casting against epoxy replicates of a micromachined silicon wafer. Silicone oils were incorporated to determine the change in modulus and surface energy caused by these additives. SEM and white light interference profilometry verified that the micropatterning process produced high fidelity, low defect micropatterns. Mechanical analysis indicated that varying the viscosity, weight percent and functionality of the added silicone oil could change the elastic modulus by over an order of magnitude (0.1-2.3 MPa). As a self-wetting resin, silicone oils migrate to the surface, hence changing the surface properties from the bulk. Both topographical and chemical features define the surface energy, which in combination with elastic modulus, dictate biological activity. The results imply that the morphology, mechanical properties and surface energy of the siloxane elastomer can be modified to elicit a specific cell response as a function of engineered topographical and chemical functionalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.