Tardive dyskinesia (TD) is a serious, often disabling, movement disorder that is caused by medications that block dopamine receptors (i.e., neuroleptics, anti-emetics). There is currently no standard treatment approach for physicians confronted with such patients. This may be the result of notions that TD is disappearing because of the switch to secondgeneration antipsychotic agents and that it is largely reversible.In this article we demonstrate that second-generation antipsychotics do, indeed, cause TD and, in fact, the frequency is likely higher than expected because of growing off-label uses and a tripling of prescriptions written in the last 10 years. In addition, studies demonstrate that TD actually remits in only a minority of patients when these drugs are withdrawn. Furthermore, neuroleptic agents are often utilized to treat TD, despite prolonged exposure being a risk factor for irreversibility. The outcome of these trends is a growing population afflicted with TD. We review non-neuroleptic agents that have shown positive results in small, early-phase, blinded trials, including tetrabenazine, amantadine, levetiracetam, piracetam, clonazepam, propranolol, vitamin B6, and Ginkgo biloba. Other options, such as botulinum toxin and deep brain stimulation, will also be discussed, and a suggested treatment algorithm is provided. While these agents are reasonable treatment options at this time there is a need, with a concerted effort between neurology and psychiatry, for full-scale drug development, including multicenter, randomized, blinded trials to confirm the effectiveness of the agents that were positive in phase 2 trials and the development of newer ones.
Importance of the field Dystonia is a neurological syndrome characterized by involuntary twisting movements and unnatural postures. It has many different manifestations and causes, and many different treatment options are available. These options include physical and occupational therapy, oral medications, intramuscular injection of botulinum toxins, and neurosurgical interventions. Areas covered in this review In this review, we first summarize the treatment options available, then we provide suggestions from our own experience for how these can be applied in different types of dystonia. In preparing this review article, an extensive literature search was undertaken using PubMed. Only selected references from 1970 to 2008 are cited. What the reader will gain This review is intended to provide the clinician with a practical guide to the treatment of dystonia. Take home message Treatment of dystonia begins with proper diagnosis and classification, followed by an appropriate search for underlying etiology, and an assessment of the functional impairment associated with the dystonia. The therapeutic approach, which is usually limited to symptomatic therapy, must then be tailored to the individual needs of the patient.
Little is known about the epilepsy that often occurs in the juvenile form of Huntington's disease (HD), but is absent from the adult-onset form. The primary aim of this study was to characterize the seizures in juvenile HD (JHD) subjects with regard to frequency, semiology, defining EEG characteristics, and response to antiepileptic agents. A multicenter, retrospective cohort was identified by database query and/or chart review. Data on age of HD onset, primary HD manifestations, number of CAG repeats, the presence or absence of seizures, seizure type(s), antiepileptic drugs used, subjects' response to antiepileptic drugs (AEDs), and EEG results were assembled, where available. Ninety subjects with genetically confirmed JHD were included. Seizures were present in 38% of subjects and were more likely to occur with younger ages of HD onset. Generalized tonic-clonic seizures were the most common seizure type, followed by tonic, myoclonic, and staring spells. Multiple seizure types commonly occurred within the same individual. Data on EEG findings and AED usage are presented. Seizure risk in JHD increases with younger age of HD onset. Our ability to draw firm conclusions about defining EEG characteristics and response to AEDs was limited by the retrospective nature of the study. Future prospective studies are required.
IMPORTANCE Urate elevation, despite associations with crystallopathic, cardiovascular, and metabolic disorders, has been pursued as a potential disease-modifying strategy for Parkinson disease (PD) based on convergent biological, epidemiological, and clinical data.OBJECTIVE To determine whether sustained urate-elevating treatment with the urate precursor inosine slows early PD progression.DESIGN, PARTICIPANTS, AND SETTING Randomized, double-blind, placebo-controlled, phase 3 trial of oral inosine treatment in early PD. A total of 587 individuals consented, and 298 with PD not yet requiring dopaminergic medication, striatal dopamine transporter deficiency, and serum urate below the population median concentration (<5.8 mg/dL) were randomized between August 2016 and December 2017 at 58 US sites, and were followed up through June 2019.INTERVENTIONS Inosine, dosed by blinded titration to increase serum urate concentrations to 7.1-8.0 mg/dL (n = 149) or matching placebo (n = 149) for up to 2 years. MAIN OUTCOMES AND MEASURESThe primary outcome was rate of change in the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS; parts I-III) total score (range, 0-236; higher scores indicate greater disability; minimum clinically important difference of 6.3 points) prior to dopaminergic drug therapy initiation. Secondary outcomes included serum urate to measure target engagement, adverse events to measure safety, and 29 efficacy measures of disability, quality of life, cognition, mood, autonomic function, and striatal dopamine transporter binding as a biomarker of neuronal integrity. RESULTSBased on a prespecified interim futility analysis, the study closed early, with 273 (92%) of the randomized participants (49% women; mean age, 63 years) completing the study. Clinical progression rates were not significantly different between participants randomized to inosine 11.1 [95% CI,] points per year) and placebo (MDS-UPDRS score, 9.9 [95% CI, 8.4-11.3] points per year; difference, 1.26 [95% CI, −0.59 to 3.11] points per year; P = .18). Sustained elevation of serum urate by 2.03 mg/dL (from a baseline level of 4.6 mg/dL; 44% increase) occurred in the inosine group vs a 0.01-mg/dL change in serum urate in the placebo group (difference, 2.02 mg/dL [95% CI, 1.85-2.19 mg/dL]; P<.001). There were no significant differences for secondary efficacy outcomes including dopamine transporter binding loss. Participants randomized to inosine, compared with placebo, experienced fewer serious adverse events (7.4 vs 13.1 per 100 patient-years) but more kidney stones (7.0 vs 1.4 stones per 100 patient-years).CONCLUSIONS AND RELEVANCE Among patients recently diagnosed as having PD, treatment with inosine, compared with placebo, did not result in a significant difference in the rate of clinical disease progression. The findings do not support the use of inosine as a treatment for early PD.
Gastrointestinal (GI) symptoms are among the most common nonmotor manifestations of Parkinson's disease (PD), and they have many important ramifications for patients. The purpose of this review is to raise awareness of the full spectrum of GI symptoms in PD which include weight loss, sialorrhea, dysphagia, nausea, constipation, and defecatory dysfunction. We will discuss their practical significance, and outline a clear approach to their evaluation and management. A brief discussion about the impacts of commonly used medical and surgical PD therapies on GI symptom manifestation is also included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.