Given a compact Riemann surface X with an action of a finite group G, the group algebra Q[G] provides an isogenous decomposition of its Jacobian variety JX, known as the group algebra decomposition of JX. We consider the set of equisymmetric Riemann surfaces M(2n − 1, D 2n , θ) for all n ≥ 2. We study the group algebra decomposition of the Jacobian JX of every curve X ∈ M(2n − 1, D 2n , θ) for all admissible actions, and we provide affine models for them. We use the topological equivalence of actions on the curves to obtain facts regarding its Jacobians. We describe some of the factors of JX as Jacobian (or Prym) varieties of intermediate coverings. Finally, we compute the dimension of the corresponding Shimura domains.
Artículo de publicación ISIGiven a compact Riemann surface X with an action of a finite group G, the group algebra provides an isogenous decomposition of its Jacobian variety JX, known as the group algebra decomposition of JX. We obtain a method to concretely build a decomposition of this kind. Our method allows us to study the geometry of the decomposition. For instance, we build several decompositions in order to determine which one has kernel of smallest order. We apply this method to families of trigonal curves up to genus 10.Fondecyt 110011
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.