PI3K is an important regulator of a number of cellular processes. We examined the contribution of PI3K to mouse CTL signaling, leading to degranulation. We show that TCR-triggered, but not phorbol ester and calcium ionophore-induced, CTL degranulation is dependent on PI3K activity. Although PI3K activity is required for optimal LFA-1-mediated adhesion and cell spreading, this most likely does not account for its full contribution to degranulation. We demonstrate that PI3K is required for TCR-stimulated ERK activation in CTL, which we have shown previously to be required for CTL degranulation. We thus define a pathway through which PI3K most likely regulates degranulation and in which ERK appears to be a key signaling molecule. Furthermore, we identified the cytoskeletal adaptor paxillin as a target of ERK downstream of TCR stimulation. Consistent with a role in degranulation, we demonstrate that paxillin is localized to the microtubule organizing center in resting cells and upon target cell binding is recruited to the contact point with the target cell. These studies demonstrate that PI3K regulates ERK activity leading to CTL degranulation, and identify paxillin as a target of ERK downstream of the TCR. That paxillin is independently phosphorylated by both tyrosine kinase(s) and ERK downstream of the TCR and localized both at the microtubule organizing center and at the target cell contact point suggests an important role for paxillin in CTL-mediated killing.
The cytoskeletal adaptor protein paxillin localizes to the microtubule organizing center (MTOC) in T cells and, upon target cell binding, is recruited to the supramolecular activation complex (SMAC). We mapped the region of paxillin that associates with both the MTOC and SMAC to the leucine-aspartic acid (LD) domains and showed that a protein segment containing LD2–4 was sufficient for MTOC and SMAC recruitment. Examination of the localization of paxillin at the SMAC revealed that paxillin localizes to the peripheral area of the SMAC along with LFA-1, suggesting that LFA-1 may contribute to its recruitment. LFA-1 or CD3 engagement alone was insufficient for paxillin recruitment because there was no paxillin accumulation at the site of CTL contact with anti–LFA-1– or anti-CD3–coated beads. In contrast, paxillin accumulation was detected when beads coated with both anti-CD3 and anti–LFA-1 were bound to CTL, suggesting that signals from both the TCR and LFA-1 are required for paxillin accumulation. Paxillin was shown to be phosphorylated downstream of ERK, but when we generated a mutation (S83A/S130A) that abolished the mobility shift as a result of phosphorylation, we found that paxillin still bound to the MTOC and was recruited to the SMAC. Furthermore, ERK was not absolutely required for MTOC reorientation in CTL that require ERK for killing. Finally, expression of the LD2–4 region of paxillin substantially reduced MTOC reorientation. These studies demonstrated that paxillin is recruited, through its LD domains, to sites of integrin engagement and may contribute to MTOC reorientation required for directional degranulation.
The cytoskeletal adaptor protein paxillin localizes to the microtubule organizing center (MTOC) in T cells and upon target cell binding is recruited to the supramolecular activation complex (SMAC). We mapped the region of paxillin that associates with both the MTOC and SMAC to the leucine-aspartic acid (LD) domains and showed that a protein segment containing LD2-4 was sufficient for MTOC and SMAC recruitment. Paxillin localizes to the peripheral area of the SMAC along with LFA-1 suggesting that LFA-1 may contribute to its recruitment. To test this possibility, beads coated with anti-CD3 were used alongside non-antigen bearing target cells, thus physically separating adhesion and TCR signals. Paxillin preferentially localized to sites of integrin engagement rather than to sites of TCR engagement, further suggesting that LFA-1 contributes to paxillin recruitment. These sites of antigen-independent integrin binding were not sufficient to induce MTOC reorientation. Paxillin has been shown to be phosphorylated downstream of ERK, but when we generated a mutation that abolished detectable phosphorylation we found that paxillin still bound to the MTOC and was recruited to the SMAC. Finally, expression of the LD2-4 region of paxillin reduced MTOC reorientation. These studies demonstrate that paxillin is recruited, through its LD domains, to sites of integrin engagement and may contribute to CTL adhesion and subsequent MTOC reorientation required for directional degranulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.