The minor histocompatibility antigen (mHag) HA-1 is the only known mHag for which mismatching is correlated with the development of severe graft versus host disease (GvHD) after human leukocyte antigen-identical bone marrow transplantation. HA-1 was found to be a nonapeptide derived from an allele of the KIAA0223 gene. The HA-1-negative allelic counterpart encoded by KIAA0223 had one amino acid difference from HA-1. Family analysis with HA-1 allele-specific polymerase chain reaction showed an exact correlation between this allelic polymorphism and the HA-1 phenotype. HA-1 allele typing of donor and recipient should improve donor selection and allow the determination of bone marrow transplantation recipients with high risk for HA-1-induced GvHD development.
H-Y is a transplantation antigen that can lead to rejection of male organ and bone marrow grafts by female recipients, even if the donor and recipient match at the major histocompatibility locus of humans, the HLA (human leukocyte antigen) locus. However, the origin and function of H-Y antigens has eluded researchers for 40 years. One human H-Y antigen presented by HLA-B7 was identified as an 11-residue peptide derived from SMCY, an evolutionarily conserved protein encoded on the Y chromosome. The protein from the homologous gene on the X chromosome,
SMCX
, differs by two amino acid residues in the same region. The identification of H-Y may aid in transplantation prognosis, prenatal diagnosis, and fertilization strategies.
A peptide recognized by two cytotoxic T cell clones specific for the human minor histocompatibility antigen H-Y and restricted by HLA-A*0201 was identified. This peptide originates from SMCY, as do two other H-Y epitopes, supporting the importance of this protein as a major source of H-Y determinants in mice and humans. In naturally processed peptides, T cells only recognize posttranslationally altered forms of this peptide that have undergone modification of a cysteine residue in the seventh position. One of these modifications involves attachment of a second cysteine residue via a disulfide bond. This modification has profound effects on T cell recognition and also occurs in other class I MHC-associated peptides, supporting its general importance as an immunological determinant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.