Spinal muscular atrophy is a neurodegenerative disease that requires multidisciplinary medical care. Recent progress in the understanding of molecular pathogenesis of spinal muscular atrophy and advances in medical technology have not been matched by similar developments in the care for spinal muscular atrophy patients. Variations in medical practice coupled with differences in family resources and values have resulted in variable clinical outcomes that are likely to compromise valid measure of treatment effects during clinical trials. The International Standard of Care Committee for Spinal Muscular Atrophy was formed in 2005, with a goal of establishing practice guidelines for clinical care of these patients. The 12 core committee members worked with more than 60 spinal muscular atrophy experts in the field through conference calls, e-mail communications, a Delphi survey, and 2 in-person meetings to achieve consensus on 5 care areas: diagnostic/new interventions, pulmonary, gastrointestinal/nutrition, orthopedics/rehabilitation, and palliative care. Consensus was achieved on several topics related to common medical problems in spinal muscular atrophy, diagnostic strategies, recommendations for assessment and monitoring, and therapeutic interventions in each care area. A consensus statement was drafted to address the 5 care areas according to 3 functional levels of the patients: nonsitter, sitter, and walker. The committee also identified several medical practices lacking consensus and warranting further investigation. It is the authors' intention that this document be used as a guideline, not as a practice standard for their care. A practice standard for spinal muscular atrophy is urgently needed to help with the multidisciplinary care of these patients.
SUMMARYThe ketogenic diet (KD) is an established, effective nonpharmacologic treatment for intractable childhood epilepsy. The KD is provided differently throughout the world, with occasionally significant variations in its administration. There exists a need for more standardized protocols and management recommendations for clinical and research use. In December 2006, The Charlie Foundation commissioned a panel comprised of 26 pediatric epileptologists and dietitians from nine countries with particular expertise using the KD. This group was created in order to create a consensus statement regarding the clinical management of the KD. Subsequently endorsed by the Practice Committee of the Child Neurology Society, this resultant manuscript addresses issues such as patient selection, pre-KD counseling and evaluation, specific dietary therapy selection, implementation, supplementation, follow-up management, adverse event monitoring, and eventual KD discontinuation. This paper highlights recommendations based on best evidence, including areas of agreement and controversy, unanswered questions, and future research.
A strategy for using tissue water as a concentration standard in 1 H magnetic resonance spectroscopic imaging studies on the brain is presented, and the potential errors that may arise when the method is used are examined. The sensitivity of the method to errors in estimates of the different water compartment relaxation times is shown to be small at short echo times (TEs). Using data from healthy human subjects, it is shown that different image segmentation approaches that are commonly used to account for partial volume effects (SPM2, FSL's FAST, and K-means) lead to different estimates of metabolite levels, particularly in gray matter (GM), owing primarily to variability in the estimates of the cerebrospinal fluid (CSF) fraction. While consistency does not necessarily validate a method, a multispectral segmentation approach using FAST yielded the lowest intersubject variability in the estimates of GM metabolites. The mean GM and white matter (WM) levels of N-acetyl groups (NAc, primarily N-acetylaspartate), choline (Ch), and creatine (Cr) obtained in these subjects using the described method with The unsuppressed "internal" water signal was introduced as a concentration reference for single-voxel proton magnetic resonance spectroscopy ( 1 H-MRS) of the brain over a decade ago (1-4). However, to our knowledge, a detailed description of how this method could be applied to spectroscopic imaging (SI), or an examination of its potential sources of error has yet to be reported. In the majority of SI studies that reported "absolute" metabolite concentrations, the metabolite signals were converted to moles per liter or kilograms of tissue using either external metabolite solutions (5-7) or ventricle water (8,9), and relatively few groups have reported using internal water (10,11). The principal advantage of using internal water in SI studies is that certain factors and potential sources of error that need to be considered when using external concentration references (e.g., RF homogeneity, coil loading, or the SI point spread function (PSF)) are obviated, since the water and metabolite signals come from the same voxel and are acquired in essentially the same way.The major assumptions when using internal water, on the other hand, are that the water densities and signal relaxation times of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) in the region of interest (ROI) can be reliably estimated and, furthermore, do not change significantly among the studied groups. Moreover, it is essential that the volume fractions of these tissues and CSF in each SI voxel are accurately measured. Measuring partial volume effects is also a requirement when using external referencing methods, but the demand on accuracy is greater when using internal water. This is because only the signal from the combined GM-WM fraction of the total water, in which the detectable metabolites are exclusively located, is used as the concentration reference. The observed water signal, however, arises from a combination of the GM, WM, and CS...
BACKGROUND: Despite many publications about cerebral cavernous malformations (CCMs), controversy remains regarding diagnostic and management strategies. OBJECTIVE: To develop guidelines for CCM management. METHODS: The Angioma Alliance (www.angioma.org), the patient support group in the United States advocating on behalf of patients and research in CCM, convened a multidisciplinary writing group comprising expert CCM clinicians to help summarize the existing literature related to the clinical care of CCM, focusing on 5 topics: (1) epidemiology and natural history, (2) genetic testing and counseling, (3) diagnostic criteria and radiology standards, (4) neurosurgical considerations, and (5) neurological considerations. The group reviewed literature, rated evidence, developed recommendations, and established consensus, controversies, and knowledge gaps according to a prespecified protocol. RESULTS: Of 1270 publications published between January 1, 1983 and September 31, 2014, we selected 98 based on methodological criteria, and identified 38 additional recent or relevant publications. Topic authors used these publications to summarize current knowledge and arrive at 23 consensus management recommendations, which we rated by class (size of effect) and level (estimate of certainty) according to the American Heart Association/American Stroke Association criteria. No recommendation was level A (because of the absence of randomized controlled trials), 11 (48%) were level B, and 12 (52%) were level C. Recommendations were class I in 8 (35%), class II in 10 (43%), and class III in 5 (22%). CONCLUSION: Current evidence supports recommendations for the management of CCM, but their generally low levels and classes mandate further research to better inform clinical practice and update these recommendations. The complete recommendations document, including the criteria for selecting reference citations, a more detailed justification of the respective recommendations, and a summary of controversies and knowledge gaps, was similarly peer reviewed and is available on line www.angioma.org/CCMGuidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.