Spinal muscular atrophy is a neurodegenerative disease that requires multidisciplinary medical care. Recent progress in the understanding of molecular pathogenesis of spinal muscular atrophy and advances in medical technology have not been matched by similar developments in the care for spinal muscular atrophy patients. Variations in medical practice coupled with differences in family resources and values have resulted in variable clinical outcomes that are likely to compromise valid measure of treatment effects during clinical trials. The International Standard of Care Committee for Spinal Muscular Atrophy was formed in 2005, with a goal of establishing practice guidelines for clinical care of these patients. The 12 core committee members worked with more than 60 spinal muscular atrophy experts in the field through conference calls, e-mail communications, a Delphi survey, and 2 in-person meetings to achieve consensus on 5 care areas: diagnostic/new interventions, pulmonary, gastrointestinal/nutrition, orthopedics/rehabilitation, and palliative care. Consensus was achieved on several topics related to common medical problems in spinal muscular atrophy, diagnostic strategies, recommendations for assessment and monitoring, and therapeutic interventions in each care area. A consensus statement was drafted to address the 5 care areas according to 3 functional levels of the patients: nonsitter, sitter, and walker. The committee also identified several medical practices lacking consensus and warranting further investigation. It is the authors' intention that this document be used as a guideline, not as a practice standard for their care. A practice standard for spinal muscular atrophy is urgently needed to help with the multidisciplinary care of these patients.
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder due to a defect in the survival motor neuron 1 (SMN1) gene. Its incidence is approximately 1 in 11,000 live births. In 2007, an International Conference on the Standard of Care for SMA published a consensus statement on SMA standard of care that has been widely used throughout the world. Here we report a two-part update of the topics covered in the previous recommendations. In part 1 we present the methods used to achieve these recommendations, and an update on diagnosis, rehabilitation, orthopedic and spinal management; and nutritional, swallowing and gastrointestinal management. Pulmonary management, acute care, other organ involvement, ethical issues, medications, and the impact of new treatments for SMA are discussed in part 2.
Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.
Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.