A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and openshell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr 2 dimer, exploring zeolitecatalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.Keywords quantum chemistry, software, electronic structure theory, density functional theory, electron correlation, computational modelling, Q-Chem Disciplines Chemistry CommentsThis article is from Molecular Physics: An International Journal at the Interface Between Chemistry and Physics 113 (2015): 184, doi:10.1080/00268976.2014. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. Authors 185A summary of the technical advances that are incorporated in the fourth major release of the Q-CHEM quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly corre...
Last year, at least 30,000 scientific papers used the Kohn–Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn–Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.
This perspective article introduces the Harvard Clean Energy Project (CEP), a theory-driven search for the next generation of organic solar cell materials. We give a broad overview of its setup and infrastructure, present first results, and outline upcoming developments.CEP has established an automated, high-throughput, in silico framework to study potential candidate structures for organic photovoltaics. The current project phase is concerned with the characterization of millions of molecular motifs using first-principles quantum chemistry. The scale of this study requires a correspondingly large computational resource which is provided by distributed volunteer computing on IBM's World Community Grid. The results are compiled and analyzed in a reference database and will be made available for public use. In addition to finding specific candidates with certain properties, it is the goal of CEP to illuminate and understand the structure-property relations in the domain of organic electronics. Such insights can open the door to a rational and systematic design of future high-performance materials. The computational work in CEP is tightly embedded in a collaboration with experimentalists, who provide valuable input and feedback to the project.
The results of the sixth blind test of organic crystal structure prediction methods are presented and discussed, highlighting progress for salts, hydrates and bulky flexible molecules, as well as on-going challenges.
In this perspective we explore the use of strategies from drug discovery, pattern recognition, and machine learning in the context of computational materials science. We focus our discussion on the development of donor materials for organic photovoltaics by means of a cheminformatics approach. These methods enable the development of models based on molecular descriptors that can be correlated to the important characteristics of the materials. Particularly, we formulate empirical models, parametrized using a training set of donor polymers with available experimental data, for the important current-voltage and efficiency characteristics of candidate molecules. The descriptors are readily computed which allows us to rapidly assess key quantities related to the performance of organic photovoltaics for many candidate molecules. As part of the Harvard Clean Energy Project, we use this approach to quickly obtain an initial ranking of its molecular library with 2.6 million candidate compounds. Our method reveals molecular motifs of particular interest, such as the benzothiadiazole and thienopyrrole moieties, which are present in the most promising set of molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.