Immunostaining mouse cochleas for tyrosine hydroxylase (TH) and dopamine beta-hydroxylase suggests that there is a rich adrenergic innervation throughout the auditory nerve trunk and a small dopaminergic innervation of the sensory cell areas. Surgical cuts in the brainstem confirm these dopaminergic fibers as part of the olivocochlear efferent bundle. Within the sensory epithelium, TH-positive terminals are seen only in the inner hair cell area, where they intermingle with other olivocochlear terminals expressing cholinergic markers (vesicular acetylcholine transporter; VAT). Double immunostaining suggests little colocalization of TH and VAT; quantification of terminal volumes suggests that TH-positive fibers constitute only 10-20% of the efferent innervation of the inner hair cell area. Immunostaining of mouse brainstem revealed a small population of TH-positive cells in and around the lateral superior olive. Consistent with cochlear projections, double staining for the cholinergic marker acetylcholinesterase suggested that TH-positive somata are not cholinergic and vice versa. All observations are consistent with the view that a small dopaminergic subgroup of lateral olivocochlear neurons 1) projects to the inner hair cell area, 2) is distinct from the larger cholinergic group projecting there, and 3) may correspond to lateral olivocochlear "shell" neurons described by others (Warr et al. [1997] Hear. Res 108:89-111).
Single-unit recordings were made from populations of auditory-nerve fibers in 12 cats before and after acoustic overstimulation. Cats were killed 4 to 16 h after exposure, and the cochleas were analyzed at the light- and electron-microscopic levels. The exposures were designed to create 40 to 60 dB of acute threshold shift. Physiological changes were similar to those seen in cases of permanent threshold shift: tuning curves with elevation of 'tips' and 'tails' were associated with significant decreases in the mean spontaneous discharge rates; tuning curves with elevated tips but hypersensitive tails were associated with clear elevation of the mean spontaneous rates. At the light-microscopic level, none of the ears showed any significant stereociliary pathology. Some of the ears showed no light-microscopic pathology whatsoever, while others showed signs of swelling and vacuolization in both inner and outer hair cell areas in cochlear regions appropriate to the CF regions showing threshold shifts. The presence or absence of these light-microscopic changes was, to some extent, dependent on the nature of the exposure stimulus. At the electron-microscopic level, in addition to apparent swelling of radial afferent terminals, the inner hair cells themselves were swollen. In two cochlear regions (from two ears) which showed acute threshold shifts of 20 to 40 dB, but no light-microscopic changes, serial-section ultrastructural analysis of stereocilia and cuticular plates was performed. In contrast to the situation in ears with permanent threshold shifts [(1986) Hear Res. 26, 65-88], there was no pathology in the intracuticular portion of the stereocilia rootlets. There were, however, significant changes in the lengths of the supracuticular portion of the rootlets. It is suggested that this attenuation of the supracuticular rootlet could decrease the stiffness of the stereocilia tufts and thereby change the tuning properties and sensitivity of the cochlear partition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.