HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy, affecting nearly half of HIV-infected patients worldwide. During HIV infection of macrophages secretion of the lysosomal protein, cathepsin B, is increased. Secreted cathepsin B has been shown to induce neurotoxicity. Oxidative stress is increased in HIV-infected patients, while antioxidants are decreased in monocytes from patients with HIV-associated dementia (HAD). Dimethyl fumarate (DMF), an antioxidant, has been reported to decrease HIV replication and neurotoxicity mediated by HIV-infected macrophages. Thus, we hypothesized that DMF will decrease cathepsin B release from HIV-infected macrophages by preventing oxidative stress and enhancing lysosomal function. Monocyte-derived macrophages (MDM) were isolated from healthy donors, inoculated with HIV-1 and treated with DMF following virus removal. After 12 days post-infection, HIV-1 p24 and total cathepsin B levels were measured from HIV-infected MDM supernatants using ELISA; intracellular reactive oxygen and nitrogen species (ROS/RNS) were measured from MDM lysates, and functional lysosomes were assessed using a pH-dependent lysosomal dye. Neurons were incubated with serum-free conditioned media from DMF-treated MDM and neurotoxicity was determined using TUNEL assay. Results indicate that DMF reduced HIV-1 replication and cathepsin B secretion from HIV-infected macrophages in a dose-dependent manner. Also, DMF decreased intracellular ROS/RNS levels, and prevented HIV-induced lysosomal dysfunction and neuronal apoptosis. In conclusion, the improvement in lysosomal function with DMF treatment may represent the possible mechanism to reduce HIV-1 replication and cathepsin B secretion. DMF represents a potential therapeutic strategy against HAND.
HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy (cART), affecting 52% of people living with HIV. Our laboratory has demonstrated increased expression of cathepsin B (CATB) in postmortem brain tissue with HAND. Increased secretion of CATB from in vitro HIV-infected monocyte-derived macrophages (MDM) induces neurotoxicity. Activation of cannabinoid receptor type 2 (CB2R) inhibits HIV-1 replication in macrophages and the neurotoxicity induced by viral proteins. However, it is unknown if CB2R agonists affect CATB secretion and neurotoxicity in HIV-infected MDM. We hypothesized that HIV-infected MDM exposed to CB2R agonists decrease CATB secretion and neurotoxicity. Primary MDM were inoculated with HIV-1ADA and treated with selective CB2R agonists JWH-133 and HU-308. HIV-1 p24 and CATB levels were determined from supernatants using ELISA. MDM were pre-treated with a selective CB2R antagonist SR144528 before JWH-133 treatment to determine if CB2R activation is responsible for the effects. Neuronal apoptosis was assessed using a TUNEL assay. Results show that both agonists reduce HIV-1 replication and CATB secretion from MDM in a time and dose-dependent manner and that CB2R activation is responsible for these effects. Finally, JWH-133 decreased HIV/MDM-CATB induced neuronal apoptosis. Our results suggest that agonists of CB2R represent a potential therapeutic strategy against HIV/MDM-induced neurotoxicity.
The respiratory disease caused by the Coronavirus infectious disease 2019 (COVID19) has spread rapidly since December 2019 in Wuhan, China. This new strain of Coronavirus is similar to the SARS Corona virus and has been termed SARSCoV-2. Both viruses have emerged from bats and adapted to humans. On March 11, 2020 COVID19 was declared Pandemic by the WHO and as of May 1, 2020 COVID19 disease continues to grow rapidly with 3,400,595 cases and 239,583 deaths world-wide. This review describes the biology of SARSCOV2, Detection, Macrophage-Mediated Pathogenesis and Potential Treatments.
Zika virus (ZIKV) compromises placental integrity, infecting the fetus. However, the mechanisms associated with ZIKV penetration into the placenta leading to fetal infection are unknown. Cystatin B (CSTB), the receptor for advanced glycation end products (RAGE), and tyrosine-protein kinase receptor UFO (AXL) have been implicated in ZIKV infection and inflammation. This work investigates CSTB, RAGE, and AXL receptor expression and activation pathways in ZIKV-infected placental tissues at term. The hypothesis is that there is overexpression of CSTB and increased inflammation affecting RAGE and AXL receptor expression in ZIKV-infected placentas. Pathological analyses of 22 placentas were performed to determine changes caused by ZIKV infection. Quantitative proteomics, immunofluorescence, and western blot were performed to analyze proteins and pathways affected by ZIKV infection in frozen placentas. The pathological analysis confirmed decreased size of capillaries, hyperplasia of Hofbauer cells, disruption in the trophoblast layer, cell agglutination, and ZIKV localization to the trophoblast layer. In addition, there was a significant decrease in CSTB, RAGE, and AXL expression and upregulation of caspase 1, tubulin beta, and heat shock protein 27. Modulation of these proteins and activation of inflammasome and pyroptosis pathways suggest targets for modulation of ZIKV infection in the placenta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.