The glass transition is the freezing of a liquid into a solid state without evident structural order. Although glassy materials are well characterized experimentally, the existence of a phase transition into the glass state remains controversial. Here, we present numerical evidence for the existence of a novel first-order dynamical phase transition in atomistic models of structural glass formers. In contrast to equilibrium phase transitions, which occur in configuration space, this transition occurs in trajectory space, and it is controlled by variables that drive the system out of equilibrium. Coexistence is established between an ergodic phase with finite relaxation time and a nonergodic phase of immobile molecular configurations. Thus, we connect the glass transition to a true phase transition, offering the possibility of a unified picture of glassy phenomena.
Recent experimental observations of the onset of calcium carbonate (CaCO3) mineralization suggest the emergence of a population of clusters that are stable rather than unstable as predicted by classical nucleation theory. This study uses molecular dynamics simulations to probe the structure, dynamics, and energetics of hydrated CaCO3 clusters and lattice gas simulations to explore the behavior of cluster populations before nucleation. Our results predict formation of a dense liquid phase through liquid-liquid separation within the concentration range in which clusters are observed. Coalescence and solidification of nanoscale droplets results in formation of a solid phase, the structure of which is consistent with amorphous CaCO3. The presence of a liquid-liquid binodal enables a diverse set of experimental observations to be reconciled within the context of established phase-separation mechanisms.
For several atomistic models of glass formers, at conditions below their glassy-dynamics-onset temperatures, T o , we use importance sampling of trajectory space to study the structure, statistics, and dynamics of excitations responsible for structural relaxation. Excitations are detected in terms of persistent particle displacements of length a. At supercooled conditions, for a of the order of or smaller than a particle diameter, we find that excitations are associated with correlated particle motions that are sparse and localized, occupying a volume with an average radius that is temperature-independent and no larger than a few particle diameters. We show that the statistics and dynamics of these excitations are facilitated and hierarchical. Excitation-energy scales grow logarithmically with a. Excitations at one point in space facilitate the birth and death of excitations at neighboring locations, and space-time excitation structures are microcosms of heterogeneous dynamics at larger scales. This nature of dynamics becomes increasingly dominant as temperature T is lowered. We show that slowing of dynamics upon decreasing temperature below T o is the result of a decreasing concentration of excitations and concomitantly growing length scales for dynamical correlations that develop in a hierarchical manner, and further that the structural-relaxation time follows the parabolic law, logð= o Þ ¼ J 2 ð1=T À 1=T o Þ 2 , for T < T o , where J, o and T o can be predicted quantitatively from dynamics at short time scales. Particle motion is facilitated and directional, and we show that this becomes more apparent with decreasing T. We show that stringlike motion is a natural consequence of facilitated, hierarchical dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.