The potential of Pseudomonas putida KT2440 to act as a plant-growth promoter or as a bioremediator of toxic compounds can be affected by desiccation. In the present work, the bacterial survival ratio (BSR) in response to air desiccation was evaluated for P . putida KT2440 in the presence of different protectors. The BSR in the presence of nonreducing disaccharides, such as trehalose, was high after 15 days of desiccation stress (occurring at 30°C and 50% relative humidity), whereas in the absence of a protector the bacterial counts diminished to nondetectable numbers (ca 2.8 log CFU/mL). The LIVE/DEAD staining method showed that bacteria protected with trehalose maintained increased numbers of green cells after desiccation while cells without protection were all observed to be red. This indicated that nonprotected bacteria had compromised membrane integrity. However, when nonprotected bacteria subjected to 18 days of desiccation stress were rehydrated for a short time with maize root exudates or for 48 h with water (prolonged rehydration), the bacterial counts were as high as that observed for those not subjected to desiccation stress, suggesting that the cells entered the viable but nonculturable (VBNC) state under desiccation and that they returned to a culturable state after those means of rehydration. Interestingly an increase in the green color intensity of cells that returned to a culturable state was observed using LIVE/DEAD staining method, indicating an improvement in their membrane integrity. Cellular activity in the VBNC state was determined. A GFP-tagged P . putida strain expressing GFP constitutively was subjected to desiccation. After 12 days of desiccation, the GFP-tagged strain lost culturability, but it exhibited active GFP expression, which in turn made the cells green. Furthermore, the expression of 16S rRNA, rpoN (housekeeping), mutL , mutS (encoding proteins from the mismatch repair complex), and oprH (encoding an outer membrane protein) were examined by RT-PCR. All evaluated genes were expressed by both types of cells, culturable and nonculturable, indicating active molecular processes during the VBNC state.
Purpose Pseudomonas putida KT2440 is a desiccation-sensitive bacterium that loses culturability after 15 days of air desiccation. We have previously shown that P. putida KT2440 can develop a viable but nonculturable (VBNC) state after being exposed to desiccation stress and eventually recover when desiccated cells are rehydrated for at least 24 h. Methods To determine which genes of transport, oxidation-reduction, and transcription processes could be involved in the return of P. putida KT2440 to the culturable state, a transcriptome analysis was carried out comparing the gene expression of non-desiccated samples with samples subjected to desiccation followed by 20 min of rehydration or desiccation followed by 24 h of rehydration. Results Desiccation stress triggered a VBNC state of P. putida. The major response was detected after 24 h of rehydration with 148 upregulated and 42 downregulated genes. During the VBNC state, P. putida activated transmembrane transport processes like that of siderophores through a TonB-dependent transporter and putative polyhydric alcohol transport systems. Prolonged rehydration with distilled water resuscitated P. putida KT2440 cells activating the catabolism of phenylalanine/tyrosine to provide energy and carbon for ubiquinone biosynthesis while maintaining a reduced protein synthesis. On the other hand, the interruption of the TonB-dependent receptor gene (PP_1446) increased desiccation survival of the mutant strain. Conclusion The activation of the iron transport system (TonB-dependent siderophore receptor) and alcohol transport can be helping the VBNC state of P. putida. Activation of catabolism of phenylalanine/tyrosine and reduced protein synthesis was needed for resuscitation from the VBNC state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.