The aim of this paper is to give a survey on the development and applications of evolutionary multi-agent systems (EMAS). The paper starts with a general introduction describing the background, structure and behaviour of EMAS. EMAS application to solving global optimisation problems is presented in the next section along with its modification targeted at lowering the computation costs by early removing certain agents based on immunological inspirations. Subsequent sections deal with the elitist variant of EMAS aimed at solving multi-criteria optimisation problems, and the co-evolutionary one aimed at solving multi-modal optimisation problems. Each variation of EMAS is illustrated with selected experimental results.
Complementing information about particular points, places, or institutions, i.e., so-called Points of Interest (POIs) can be achieved by matching data from the growing number of geospatial databases; these include Foursquare, OpenStreetMap, Yelp, and Facebook Places. Doing this potentially allows for the acquisition of more accurate and more complete information about POIs than would be possible by merely extracting the information from each of the systems alone. Problem: The task of Points of Interest matching, and the development of an algorithm to perform this automatically, are quite challenging problems due to the prevalence of different data structures, data incompleteness, conflicting information, naming differences, data inaccuracy, and cultural and language differences; in short, the difficulties experienced in the process of obtaining (complementary) information about the POI from different sources are due, in part, to the lack of standardization among Points of Interest descriptions; a further difficulty stems from the vast and rapidly growing amount of data to be assessed on each occasion. Research design and contributions: To propose an efficient algorithm for automatic Points of Interest matching, we: (1) analyzed available data sources—their structures, models, attributes, number of objects, the quality of data (number of missing attributes), etc.—and defined a unified POI model; (2) prepared a fairly large experimental dataset consisting of 50,000 matching and 50,000 non-matching points, taken from different geographical, cultural, and language areas; (3) comprehensively reviewed metrics that can be used for assessing the similarity between Points of Interest; (4) proposed and verified different strategies for dealing with missing or incomplete attributes; (5) reviewed and analyzed six different classifiers for Points of Interest matching, conducting experiments and follow-up comparisons to determine the most effective combination of similarity metric, strategy for dealing with missing data, and POIs matching classifier; and (6) presented an algorithm for automatic Points of Interest matching, detailing its accuracy and carrying out a complexity analysis. Results and conclusions: The main results of the research are: (1) comprehensive experimental verification and numerical comparisons of the crucial Points of Interest matching components (similarity metrics, approaches for dealing with missing data, and classifiers), indicating that the best Points of Interest matching classifier is a combination of random forest algorithm coupled with marking of missing data and mixing different similarity metrics for different POI attributes; and (2) an efficient greedy algorithm for automatic POI matching. At a cost of just 3.5% in terms of accuracy, it allows for reducing POI matching time complexity by two orders of magnitude in comparison to the exact algorithm.
Abstract. Co-evolutionary techniques for evolutionary algorithms are aimed at overcoming their limited adaptive capabilities and allow for the application of such algorithms to problems for which it is difficult or even impossible to formulate explicit fitness function. In this paper the idea of co-evolutionary multi-agent system with host-parasite mechanism for multi-objective optimization is introduced. In presented system the Pareto frontier is located by the population of agents as a result of co-evolutionary interactions between species. Also, results from runs of presented system against test functions are presented.
Evolutionary Multi-Agent System approach for optimization (for multi-objective optimization in particular) is a promising computational model. Its computational as well as implemental simplicity cause that approaches based on EMAS model can be widely used for solving optimization tasks. It turns out that introducing some additional mechanisms into basic EMAS-such as presented in the course of this paper elitist extensions cause that results obtained with the use of proposed elEMAS (elitist Evolutionary Multi-Agent System) approach are as high-quality results as results obtained by such famous and commonly used algorithms as NSGA-II or SPEA2. Apart from the computational simplicity especially important and interesting aspects of EMAS-based algorithms it is characteristic for them a kind of soft selection which can be additionally easily adjusted depending on a particular situation-in particular it is possible to introduce auto-adapting selection into such systems. Such a kind of selection seems to be especially important and valuable in solving optimization tasks in uncertain or "noised" environments. In the course of this paper the model and experimental results obtained by elEMAS system in solving noisy multi-objective optimization problems are presented and the general conclusion is as follows: EMAS-based optimization system seems to be more effective alternative than classical (i.e. non agent-based) evolutionary algorithms for multi-objective optimization, in particular, in uncertain environment, it seems to be better alternative than NSGA-II algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.