Simple Summary: The spread and development of extended spectrum beta-lactamase (ESBL)-mediated antimicrobial resistance is a significant concern in healthcare with impacts to animal and public health alike. While the occurrence of the ESBL phenotype in Escherichia coli has been investigated in depth by numerous studies, there is still a lack of information regarding ESBL-producing bacterial isolates from clinical specimens of equine origin. In this study, we investigated the incidence of ESBL-producing E. coli in hospitalized horses. Overall, 207 E. coli isolates were analyzed for their antimicrobial susceptibility and 13 ESBL-producing E. coli isolates were genotypically characterized. Seven out of the 13 E. coli isolates were found to harbor the resistance genes bla CTX-M-1 or bla SHV-1 and a novel beta-lactamase TEM gene variant, bla TEM-233 was discovered. Furthermore, despite being phenotypically susceptible to tested carbapenems, 1 out of 13 E. coli isolates was PCR-positive for the carbapenemase gene, bla IMP-1 . The latter is an alarming finding because the presence of carbapenemase resistance genes in equine pathogens is extremely rare. In conclusion, equines can be reservoirs for ESBL-producing Enterobacteriaceae, and further investigation into this species group is necessary to understand their impact in the spread and development of antibiotic resistance genes.Abstract: Escherichia coli isolates were recovered from clinical specimens of equine patients admitted to the Texas A&M Veterinary Medical Teaching Hospital over a five-year period. Ceftiofur resistance was used as a marker for potential extended-spectrum beta-lactamase (ESBL)-activity, and of the 48 ceftiofur-resistant E. coli isolates, 27.08% (n = 13) were phenotypically ESBL-positive. Conventional PCR analysis followed by the large-scale bla Finder multiplex PCR detected the ESBL genes, CTX-M-1 and SHV, in seven out of the 13 isolates. Moreover, beta-lactamase genes of TEM-1-type, BER-type (AmpC), and OXA-type were also identified. Sequencing of these genes resulted in identification of a novel TEM-1-type gene, called bla TEM-233 , and a study is currently underway to determine if this gene confers the ESBL phenotype. Furthermore, this report is the first to have found E. coli ST1308 in horses. This subtype, which has been reported in other herbivores, harbored the SHV-type ESBL gene. Finally, one out of 13 E. coli isolates was PCR-positive for the carbapenemase gene, bla IMP-1 despite the lack of phenotypically proven resistance to imipenem. With the identification of novel ESBL gene variant and the demonstrated expansion of E. coli sequence types in equine patients, this study underscores the need for more investigation of equines as reservoirs for ESBL-producing pathogens. ]. The wide application of beta-lactam antibiotics has been considered as a driving factor in the development and spread of extended-spectrum beta-lactamase (ESBL)-conferred resistance in Gram-negative bacterial pathogens such as Escherichia coli, Klebsiella spp., and Sa...
Bovine mastitis is the predominant cause for antimicrobial use on dairy farms and is a major source of economic losses in the dairy industry. In this study, the antimicrobial susceptibility profiles of common mastitis-causing pathogens, Staphylococcus aureus (n = 62), Streptococcus agalactiae (n = 46), and Escherichia coli (n = 129), were determined for dairy cattle with mastitis across 142 Ukrainian farms. The results showed that there were more gentamicin resistant S. aureus isolates (16.95%) identified in this study than previously reported for Ukrainian dairy cattle. Moreover, low levels of amoxicillin susceptibly (13.51%) were observed for St. agalactiae, which contrasted a previous study showing susceptibility levels of >50%. St. agalactiae resistance to tetracycline was observed in 80% of the isolates. Cephalosporin use was most ineffective against E. coli, with 43.27–56% of the isolates exhibiting this resistant trait. Overall, this study performed a preliminary analysis of antimicrobial resistance on mastitis isolates from Ukrainian farms. However, given the limited numbers of the isolates tested in this study and that the publications on antimicrobial resistance in animal husbandry of Ukraine are very few, more extensive investigations are needed to comprehensively examine susceptibility patterns of mastitis-causing pathogens in dairy cattle in Ukraine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.