Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling.
In this study, rhizobia strains isolated from white clover (Trifolium repens) root nodules were evaluated in an effort to identify an efficient nitrogen-fixing rhizobia strain that can also improve the growth of rice plants (Oryza sativa). White clover plants were collected from seven sites in south Brazil, and 78 native rhizobia isolates were obtained. The genetic diversity analysis of those isolates was carried out by BOX-polymerase chain reaction. Overall, the native rhizobia isolated showed a high genetic diversity, but when the bacterial isolates from the same site were compared, the diversity was lower. One native rhizobia, POA3 (isolated from the Porto Alegre locality), was able to promote the growth of both plants and is therefore a good candidate for new inoculant formulation. Finally, we can conclude that the community of native rhizobia symbiont of white clover plants in southern Brazil is highly diverse and the growth promotion effect of rhizobia inoculation on rice plants was more pronounced in a poor nutrient substrate condition than in a rich nutrient substrate condition.
Paenibacillus riograndensis SBR5T , a nitrogen-fixing Gram-positive rhizobacterium isolated from a wheat field in the south of Brazil, has a great potential for agricultural applications due to its plant growth promotion effects. Here we present the draft genome sequence of P. riograndensis SBR5 T . Its 7.37-Mb genome encodes determinants of the diazotrophic lifestyle and plant growth promotion, such as nitrogen fixation, antibiotic resistance, nitrate utilization, and iron uptake. Nitrogen fixation has been described in several species of the genus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.