Genomic regions under high selective pressure present specific runs of homozygosity (ROH), which provide valuable information on the genetic mechanisms underlying the adaptation to environment imposed challenges. In broiler chickens, the adaptation to conventional production systems in tropical environments lead the animals with favorable genotypes to be naturally selected, increasing the frequency of these alleles in the next generations. In this study, ~1400 chickens from a paternal broiler line were genotyped with the 600 K Affymetrix® Axiom® high-density (HD) genotyping array for estimation of linkage disequilibrium (LD), effective population size (N e ), inbreeding and ROH. The average LD between adjacent single nucleotide polymorphisms (SNPs) in all autosomes was 0.37, and the LD decay was higher in microchromosomes followed by intermediate and macrochromosomes. The N e of the ancestral population was high and declined over time maintaining a sufficient number of animals to keep the inbreeding coefficient of this population at low levels. The ROH analysis revealed genomic regions that harbor genes associated with homeostasis maintenance and immune system mechanisms, which may have been selected in response to heat stress. Our results give a comprehensive insight into the relationship between shared ROH regions and putative regions related to survival and production traits in a paternal broiler line selected for over 20 years. These findings contribute to the understanding of the effects of environmental and artificial selection in shaping the distribution of functional variants in the chicken genome.
Single nucleotide polymorphism (SNP) markers are used to study population structure and conservation genetics, which permits assessing similarities regarding the linkage disequilibrium and information about the relationship among individuals. To investigate the population genomic structure of 300 females and 25 males from a commercial maternal pig line we analyzed linkage disequilibrium extent, inbreeding coefficients using genomic and conventional pedigree data, and population stratification. The average linkage disequilibrium (r 2 ) was 0.291 ± 0.312 for all adjacent SNPs, distancing less than 100 Kb (kilobase) between markers. The average inbreeding coefficients obtained from runs of homozygosity (ROH) and pedigree analyses were 0.119 and 0.0001, respectively. Low correlation was observed between the inbreeding coefficients possibly as a result of genetic recombination effect accounted for the ROH estimates or caused by pedigree identification errors. A large number of long ROHs might indicate recent inbreeding events in the studied population. A total of 36 homozygous segments were found in more than 30% of the population and these ROH harbor genes associated with reproductive traits. The population stratification analysis indicated that this population was possibly originated from two distinct populations, which is a result from crossings between the eastern and western breeds used in the formation of the line. Our findings provide support to understand the genetic structure of swine populations and may assist breeding companies to avoid a high level of inbreeding coefficients to maintain genetic diversity, showing the effectiveness of using genome-wide SNP information for quantifying inbreeding when the pedigree was incomplete or incorrect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.