Bovine mastitis is mainly caused by bacteria of the genus Staphylococcus spp., which possess different virulence factors, including the capacity for biofilm formation that provides enhanced protection against the action of immune system components and serves as a barrier against the penetration of antimicrobial agents. This study aimed to characterize 181 Staphylococcus spp. Strains—including Staphylococcusaureus and coagulase-negative staphylococci (CoNS) isolated from bovine subclinical mastitis in six Brazilian states—by molecular methods. RT-qPCR was used to verify the expression of genes of the ica operon—mainly responsible for biofilm formation—as well as bap and bhp. Chromosome similarity among the isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The icaA gene was detected in 79 (43.6%) isolates, icaB in 24 (13.2%), icaC in 57 (31.4%), and icaD in 127 (70.1%). The bap gene was identified in 66 (36.4%) isolates, while the bhp gene was found in nine (4.9%). RT-qPCR confirmed the expression of the icaA gene in 60 (75.9%) isolates, of icaB in six (25%), of icaC in 26 (45.6%), and of icaD in 80 (63%). Clonal typing of the isolates by PFGE permitted the identification of eight Staphylococcusaureus clusters that simultaneously included ≥3 strains, with a similarity of ≥80%. Regarding the other species studied, three clusters were observed for Staphylococcuschromogenes and four clusters for Staphylococcusepidermidis. Only one cluster each was identified for Staphylococcussaprophyticus and Staphylococcussimulans, while the other species did not form any cluster. With respect to MLST, ST126 and ST1 were the prevalent sequence types in S. aureus, while in S.epidermidis all sequence types were different. These results reveal strains with the same evolutionary origin as other isolates, which might cause infections in humans and animals, suggesting their ability to spread between these species.
Staphylococcus aureus and coagulase-negative staphylococci (CoNS) have become the main causative agents of medical device-related infections due to their biofilm-forming capability, which protects them from the host’s immune system and from the action of antimicrobials. This study evaluated the ability of RNA III inhibiting peptide (RIP) to inhibit biofilm formation in 10 strains isolated from clinical materials, including one S. aureus strain, two S. epidermidis, two S. haemolyticus, two S. lugdunensis, and one isolate each of the following species: S. warneri, S. hominis, and S. saprophyticus. The isolates were selected from a total of 200 strains evaluated regarding phenotypic biofilm production and the presence and expression of the ica operon. The isolates were cultured in trypticase soy broth with 2% glucose in 96-well polystyrene plates containing catheter segments in the presence and absence of RIP. The catheter segments were observed by scanning electron microscopy. The results showed inhibition of biofilm formation in the presence of RIP in all CoNS isolates; however, RIP did not interfere with biofilm formation by S. aureus. RIP is a promising tool that might be used in the future for the prevention of biofilm-related infections caused by CoNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.