-The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E 1 ') ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha -1 , respectively.
-The objective of this work was to develop and evaluate a method for estimating corn yield using a minimum number of parameters and limited information about crop management. The proposed method estimates potential and attainable yields based on the technological level of the production systems and on relatively simple agrometeorological models. Corn yield was estimated for the crop seasons from 2000/2001 to 2007/2008, considering several locations and regions in Brazil, and was compared with the actual yield data from official surveys. There was a high correlation between the estimated and observed yield (0.76≤R 2 <0.92; p<0.01), with model efficiency (E1') ranging from 0.45 to 0.73; mean relative error (MRE) between -0.9 and 2.4%; and mean absolute error (MAE) of less than 70 kg ha -1 , depending on the technological level adopted. Based on these results, the proposed yield model can be recommended to forecast yields all over the country, contributing to make this process more precise and accurate.Index terms: Zea mays, large-area crop modeling, paremetrization, risk analysis, technological potential yield, yield forecast. Modelagem da produtividade de milho no Brasil em função das condições meteorológicas e do nível tecnológicoResumo -O objetivo deste trabalho foi desenvolver e avaliar um método para estimar a produtividade de milho com uso de um número mínimo de parâmetros e de informações limitadas sobre o manejo da cultura. O método proposto estima rendimentos potenciais e atingíveis com base no nível tecnológico dos sistemas de produção e em modelos agrometeorológicos relativamente simples. A produtividade de milho foi estimada para as safras de 2000/2001 a 2007/2008, tendo-se considerado vários locais e regiões do Brasil, e comparada aos dados de produção reais de levantamentos oficiais. A produtividade estimada apresentou alta correlação com a observada (0,76≤R 2 <0,92; p<0,01), com eficiência do modelo (E1') entre 0,45 e 0,73; erro médio relativo (MRE) entre -0,9 e 2,4%; e erro médio absoluto (MAE) inferior a 70 kg ha -1 , de acordo com o nível tecnológico considerado. Com base nestes resultados, este modelo pode ser recomendado para estimativas de produtividade em todo o País, e contribuir para tornar este processo mais preciso e exato.Termos para indexação: Zea mays, modelagem de cultura em grandes áreas, parametrização, análise de risco, produtividade potencial tecnológica, previsão de safra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.