BackgroundNumerous studies have highlighted the elevated degree of comorbidity associated with autism spectrum disorder (ASD). These comorbid conditions may add further impairments to individuals with autism and are substantially more prevalent compared to neurotypical populations. These high rates of comorbidity are not surprising taking into account the overlap of symptoms that ASD shares with other pathologies. From a research perspective, this suggests common molecular mechanisms involved in these conditions. Therefore, identifying crucial genes in the overlap between ASD and these comorbid disorders may help unravel the common biological processes involved and, ultimately, shed some light in the understanding of autism etiology.ResultsIn this work, we used a two-fold systems biology approach specially focused on biological processes and gene networks to conduct a comparative analysis of autism with 31 frequently comorbid disorders in order to define a multi-disorder subcomponent of ASD and predict new genes of potential relevance to ASD etiology. We validated our predictions by determining the significance of our candidate genes in high throughput transcriptome expression profiling studies. Using prior knowledge of disease-related biological processes and the interaction networks of the disorders related to autism, we identified a set of 19 genes not previously linked to ASD that were significantly differentially regulated in individuals with autism. In addition, these genes were of potential etiologic relevance to autism, given their enriched roles in neurological processes crucial for optimal brain development and function, learning and memory, cognition and social behavior.ConclusionsTaken together, our approach represents a novel perspective of autism from the point of view of related comorbid disorders and proposes a model by which prior knowledge of interaction networks may enlighten and focus the genome-wide search for autism candidate genes to better define the genetic heterogeneity of ASD.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3667-9) contains supplementary material, which is available to authorized users.
Several gene expression experiments on autism spectrum disorders have been conducted using both blood and brain tissue. Individually, these studies have advanced our understanding of the molecular systems involved in the molecular pathology of autism and have formed the bases of ongoing work to build autism biomarkers. In this study, we conducted an integrated systems biology analysis of 9 independent gene expression experiments covering 657 autism, 9 mental retardation and developmental delay and 566 control samples to determine if a common signature exists and to test whether regulatory patterns in the brain relevant to autism can also be detected in blood. We constructed a matrix of differentially expressed genes from these experiments and used a Jaccard coefficient to create a gene-based phylogeny, validated by bootstrap. As expected, experiments and tissue types clustered together with high statistical confidence. However, we discovered a statistically significant subgrouping of 3 blood and 2 brain data sets from 3 different experiments rooted by a highly correlated regulatory pattern of 66 genes. This Root 66 appeared to be non-random and of potential etiologic relevance to autism, given their enriched roles in neurological processes key for normal brain growth and function, learning and memory, neurodegeneration, social behavior and cognition. Our results suggest that there is a detectable autism signature in the blood that may be a molecular echo of autism-related dysregulation in the brain.
The burden of comorbidity in Autism Spectrum Disorder (ASD) is substantial. The symptoms of autism overlap with many other human conditions, reflecting common molecular pathologies suggesting that cross-disorder analysis will help prioritize autism gene candidates. Genes in the intersection between autism and related conditions may represent nonspecific indicators of dysregulation while genes unique to autism may play a more causal role. Thorough literature review allowed us to extract 125 ICD-9 codes comorbid to ASD that we mapped to 30 specific human disorders. In the present work, we performed an automated extraction of genes associated with ASD and its comorbid disorders, and found 1031 genes involved in ASD, among which 262 are involved in ASD only, with the remaining 779 involved in ASD and at least one comorbid disorder. A pathway analysis revealed 13 pathways not involved in any other comorbid disorders and therefore unique to ASD, all associated with basal cellular functions. These pathways differ from the pathways associated with both ASD and its comorbid conditions, with the latter being more specific to neural function. To determine whether the sequence of these genes have been subjected to differential evolutionary constraints, we studied long term constraints by looking into Genomic Evolutionary Rate Profiling, and showed that genes involved in several comorbid disorders seem to have undergone more purifying selection than the genes involved in ASD only. This result was corroborated by a higher dN/dS ratio for genes unique to ASD as compare to those that are shared between ASD and its comorbid disorders. Short-term evolutionary constraints showed the same trend as the pN/pS ratio indicates that genes unique to ASD were under significantly less evolutionary constraint than the genes associated with all other disorders.
Purpose: The aim of this study is to identify differential metabolomic signatures in plasma samples of distinct subtypes of breast cancer patients that could be used in clinical practice as diagnostic biomarkers for these molecular phenotypes and to provide a more individualized and accurate therapeutic procedure. Methods: Untargeted LC-HRMS metabolomics approach in positive and negative electrospray ionization mode was used to analyze plasma samples from LA, LB, HER2+ and TN breast cancer patients and healthy controls in order to determine specific metabolomic profiles through univariate and multivariate statistical data analysis. Results: We tentatively identified altered metabolites displaying concentration variations among the four breast cancer molecular subtypes. We found a biomarker panel of 5 candidates in LA, 7 in LB, 5 in HER2 and 3 in TN that were able to discriminate each breast cancer subtype with a false discovery range corrected p-value < 0.05 and a fold-change cutoff value > 1.3. The model clinical value was evaluated with the AUROC, providing diagnostic capacities above 0.85. Conclusion: Our study identifies metabolic profiling differences in molecular phenotypes of breast cancer. This may represent a key step towards therapy improvement in personalized medicine and prioritization of tailored therapeutic intervention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.