This study aimed to investigate if wingless‐related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti‐Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti‐Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR–Cas9 transfection in MC3T3‐E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti‐Machined. The analysis of the expression of calcium‐calmodulin‐dependent protein kinase II and β‐catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti‐Nano by preventing the activation of Wnt/β‐catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/β‐catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.
Aim: This study aimed to evaluate the ability of human periodontal ligament stem cells (PDLSCs) with high (HP-PDLSCs) and low (LP-PDLSCs) osteogenic potential, in addition to mixed cells, to repair bone tissue. Methods: Cell phenotype, proliferation and differentiation were evaluated. Undifferentiated PDLSCs were injected into rat calvarial defects and the new bone was evaluated by μCT, histology and real-time PCR. Results: PDLSCs exhibited a typical mesenchymal stem cell phenotype and HP-PDLSCs showed lower proliferative and higher osteogenic potential than LP-PDLSCs. PDLSCs induced similar bone formation and histological analysis suggests a remodeling process, confirmed by osteogenic and osteoclastogenic markers, especially in tissues derived from defects treated with HP-PDLSCs. Conclusion: PDLSCs induced similar bone formation irrespective of their in vitro osteogenic potential.
Aim: We evaluated the bone repair induced by MSCs from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs) injected into rat calvarial defects at two time points. Methods & results: Both cell populations expressed MSC surface markers and differentiated into adipocytes and osteoblasts. μCT showed that the combination of cells from distinct sources exhibited synergistic effects to increase bone repair with an advantage when BM-MSCs were injected prior to AT-MSCs. The higher osteogenic potential of these MSC combinations was demonstrated using an in vitro coculture system where BM-MSCs and AT-MSCs association induced higher ALP activity in MC3T3-E1 cells. Conclusion: Our findings may drive new approaches to treat bone defects and shed light on the complexity of the mechanisms involved in bone regeneration.
Background: The events of bone formation and osteoblast/titanium (Ti) interactions may be affected by Hedgehog and Notch signalling pathways. Herein, we investigated the effects of modulation of these signalling pathways on osteoblast differentiation caused by the nanostructured Ti (Ti-Nano) generated by H2SO4/H2O2. Methods: Osteoblasts from newborn rat calvariae were cultured on Ti-Control and Ti-Nano in the presence of the Hedgehog agonist purmorphamine or antagonist cyclopamine and of the Notch antagonist N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or agonist bexarotene. Osteoblast differentiation was evaluated by alkaline phosphatase activity and mineralization, and the expression of Hedgehog and Notch receptors was also evaluated. Results: In general, purmorphamine and DAPT increased while cyclopamine and bexarotene decreased osteoblast differentiation and regulated the receptor expression on both Ti surfaces, with more prominent effects on Ti-Nano. The purmorphamine and DAPT combination exhibited synergistic effects on osteoblast differentiation that was more intense on Ti-Nano. Conclusion: Our results indicated that the Hedgehog and Notch signalling pathways drive osteoblast/Ti interactions more intensely on nanotopography. We also demonstrated that combining Hedgehog activation with Notch inhibition exhibits synergistic effects on osteoblast differentiation, especially on Ti-Nano. The uncovering of these cellular mechanisms contributes to create strategies to control the process of osseointegration based on the development of nanostructured surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.